3个回答
展开全部
X平方+Y平方=1,变为参数方程:x=cost,y=sint,其中t为参数。
则3X-4Y=3cost-4sint
=3[(cos(t/2))^2-(sin(t/2))^2]-8sin(t/2)cos(t/2)
=3(cos(t/2))^2-3(sin(t/2))^2-8sin(t/2)cos(t/2)
=[cos(t/2)-3sin(t/2)]*[3cos(t/2)+sin(t/2)]
≤√{[cos(t/2)-3sin(t/2)]^2+[3cos(t/2)+sin(t/2)]^2}/2(注:根号后面的内容全部在根号里面,下同)
=√5
所以最大值是√5
则3X-4Y=3cost-4sint
=3[(cos(t/2))^2-(sin(t/2))^2]-8sin(t/2)cos(t/2)
=3(cos(t/2))^2-3(sin(t/2))^2-8sin(t/2)cos(t/2)
=[cos(t/2)-3sin(t/2)]*[3cos(t/2)+sin(t/2)]
≤√{[cos(t/2)-3sin(t/2)]^2+[3cos(t/2)+sin(t/2)]^2}/2(注:根号后面的内容全部在根号里面,下同)
=√5
所以最大值是√5
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询