已知数列{an}中(1)a1=1,且anan+1=2^n,求通项公式
5个回答
展开全部
由题意:n=1时,a2*a1=a2*1=2,即a2=2
n=2时,a2*a3=4,即a3=2
当n>=2时,
anan+1=2^n
an-1 an=2^(n-1)
故an+1/an-1=2
所以隔项成等比数列
当n为偶数时,an=a2*2^(n/2 -1) =2^(n/2)
当n为奇数时,an=a3*2^[(n-1)/2 -1]=2^[(n-1)/2]
又n=1时符合式子2^[(n-1)/2]
故通项公式为:
an=2^[(n-1)/2](n为奇数);an=2^(n/2)(n为偶数)
n=2时,a2*a3=4,即a3=2
当n>=2时,
anan+1=2^n
an-1 an=2^(n-1)
故an+1/an-1=2
所以隔项成等比数列
当n为偶数时,an=a2*2^(n/2 -1) =2^(n/2)
当n为奇数时,an=a3*2^[(n-1)/2 -1]=2^[(n-1)/2]
又n=1时符合式子2^[(n-1)/2]
故通项公式为:
an=2^[(n-1)/2](n为奇数);an=2^(n/2)(n为偶数)
展开全部
anan+1=2^n
ana(n-1)=2^(n-1)
两式相除
a(n+1)/a(n-1)=2
所以数列的偶数项,奇数项各自成等比数列。
a1=1, a2=2
所以a(2n)=2^n
a(2n-1)=2^(n-1)
所以an=2^(n/2), n是偶数
2^((n-1)/2), n是奇数
讨论奇数偶数,是因为a(n+1), a(n-1)的项数相差为2,并不是相邻两项的关系。而且奇数项们,偶数项们,不符合一个数列表达式。
ana(n-1)=2^(n-1)
两式相除
a(n+1)/a(n-1)=2
所以数列的偶数项,奇数项各自成等比数列。
a1=1, a2=2
所以a(2n)=2^n
a(2n-1)=2^(n-1)
所以an=2^(n/2), n是偶数
2^((n-1)/2), n是奇数
讨论奇数偶数,是因为a(n+1), a(n-1)的项数相差为2,并不是相邻两项的关系。而且奇数项们,偶数项们,不符合一个数列表达式。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
anan+1=2^n
an-1an=2^(n-1)
an+1=2an-1
又a1=1 得到a2=2 a3=2
2^[(n-1)/2],n为奇数
an={
2^(n/2) ,n为偶数
an-1an=2^(n-1)
an+1=2an-1
又a1=1 得到a2=2 a3=2
2^[(n-1)/2],n为奇数
an={
2^(n/2) ,n为偶数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
anan+1=2^n anan=2^n-1 an=根号下2^n-1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
由题意:n=1时,a2*a1=a2*1=2,即a2=2
n=2时,a2*a3=4,即a3=2
当n>=2时,
anan+1=2^n
an-1 an=2^(n-1)
故an+1/an-1=2
所以隔项成等比数列
当n为偶数时,an=a2*2^(n/2 -1) =2^(n/2)
当n为奇数时,an=a3*2^[(n-1)/2 -1]=2^[(n-1)/2]
又n=1时符合式子2^[(n-1)/2]
故通项公式为:
an=2^[(n-1)/2](n为奇数);an=2^(n/2)(n为偶数)
n=2时,a2*a3=4,即a3=2
当n>=2时,
anan+1=2^n
an-1 an=2^(n-1)
故an+1/an-1=2
所以隔项成等比数列
当n为偶数时,an=a2*2^(n/2 -1) =2^(n/2)
当n为奇数时,an=a3*2^[(n-1)/2 -1]=2^[(n-1)/2]
又n=1时符合式子2^[(n-1)/2]
故通项公式为:
an=2^[(n-1)/2](n为奇数);an=2^(n/2)(n为偶数)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询