讨论函数f(x)=ax+1/x+2(a≠1/2)在(x>-2)上的单调性

yuyan940322
推荐于2016-12-01 · TA获得超过1725个赞
知道小有建树答主
回答量:261
采纳率:0%
帮助的人:0
展开全部
令,x2>x1,则有X2-X1>0,X1*X2>0,

f(x2)-f(x1)=(ax2+1)/(x2+2)-(ax1+1)/(x1+2)
=[2a(x2-x1)+(x1-x2)]/[x1*x2+2(x1+x2)+4]
=[(x2-x1)(2a-1)]/[x1*x2+2(x1+x2)+4].

因为:X2-X1>0,X1*X2>0,(X>-2)则有
[X1*X2+2(X1+X2)+4]>0,(a≠1/2)
讨论:
1)当(2a-1)>0时,a>1/2,有,f(x2)-f(x1)>0,
f(x2)>f(x1),x2>x1,
则,f(x)在X>-2上是单调递增函数.
2)当(2a-1)<0时,a<1/2,有,f(x2)-f(x1)<0,
f(x2)<f(x1),x2>x1,
则,f(x)在X>-2上是单调递减函数.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式