2009高考全国卷1理科数学第20题详解

在数列{a<n>}中,a<1>=1,a<n+1>=(1+1/n)*a<n>+(n+1)/2^n(1)设b<n>=a<n>/n,求数列{b<n>}的通项公式。(2)求数列{... 在数列{a<n>}中,a<1>=1,a<n+1>=(1+1/n)*a<n>+(n+1)/2^n
(1)设b<n>=a<n>/n,求数列{b<n>}的通项公式。
(2)求数列{a<n>}的前n项和S<n>。
[“<n>”意为“下标为n”;“2^n”意为“2的n次方”。]

答案:
(1)b<n>=2-1/2^n-1
(2)S<n>=n(n+1)+(2+n)/2^n+1-4

求详细解答,谢谢!
展开
 我来答
sarahzeng2008
2009-08-29 · 超过12用户采纳过TA的回答
知道答主
回答量:33
采纳率:0%
帮助的人:34万
展开全部
a(n+1)=(1+1/n)*a(n)+(n+1)/2^n
a(n)=(1+1/n-1)*a(n-1)+n/2^(n-1)
代入第一个式子,得n+1/(n-1)a(n-1)+(n+1)[1/2^(n-1)+1/2^n]
然后以此类推:得 a(n+1)=[(n+1)/1]a1+(n+1)[1/2+1/4+.......+1/2^n]
即 a(n+1)=(n+1)a1+(n+1){a1[1-(1/2^n)/(1/2)]}
化简得: an=2n-n*[1/2^(n-1)]
因为: bn=an/n
得: bn=2-[1/2^(n-1)]
因为: an=2n-n*[1/2^(n-1)]
所以求sn 就是求两个通向公式的和,即2n和n*[1/2^(n-1)].
sn1=2n[1+n]/2=n(n+1) ; sn2=[n(n+1)]*(1/2)[1-(1/2)^n]/(1/2)
sn=sn1+sn2=n(n+1)[2-1/2^n]
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式