已知函数f(x)=loga(1-mx)/(x-1)(a>0,a≠1)的图像关于原点对称,

1)求m的值2)判断f(x)在(1,正无穷)上的单调性,并根据定义证明... 1)求m的值
2)判断f(x)在(1,正无穷)上的单调性,并根据定义证明
展开
冀鸿信FU
2009-08-30 · TA获得超过9441个赞
知道大有可为答主
回答量:1049
采纳率:100%
帮助的人:0
展开全部
(1)
∵f(x)图像关于原点对称
∴f(x)是奇函数
f(-x)=loga(1+mx)/-x-1
=-f(x)
=-loga(1-mx)/(x-1)
=loga(x-1)/(1-mx)
∴1+mx/-x-1=x-1/1-mx
解得:
{m=1
{m=-1
∵1-mx/x-1>0
∴1-mx>0,x-1>0
或1-mx<0,x-1<0
即:1<x<1/m
或 1/m<x<1
∴m=-1(m=1舍去)

(2)
f(x)=loga(x+1)/(x-1) x>1
x+1/x-1=[(x-1)+2]/(x-1)
=1+[2/(x-1)]
当x增大时
2/x-1递减
即:x+1/x-1
随X的增大而减小
所以 f(x)在 (1,正无穷)单调递减
wanghuan900126
2009-08-30
知道答主
回答量:31
采纳率:0%
帮助的人:0
展开全部
这种题要先从最简单的做
做熟就好了
把函数单调区间 好好看看
做会简单的 难的你会发现他们是一样的
而且高考会有这种题
大概十多分
加油吧
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式