爱因斯坦相对论到底是什么?
4个回答
展开全部
其实我对这个概念也是一知半解的在网上找了点资料希望对你有用
相对论是关于时空和引力的基本理论,主要由爱因斯坦创立,分为狭义相对论(特殊相对论)和广义相对论(一般相对论)。相对论的基本假设是光速不变原理,相对性原理和等效原理。相对论和量子力学是现代物理学的两大基本支柱。奠定了经典物理学基础的经典力学,不适用于高速运动的物体和微观条件下的物体。相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。相对论极大的改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”,“四维时空”“弯曲空间”等全新的概念。
狭义相对论
主条目:狭义相对论
狭义相对论,是只限于讨论惯性系情况的相对论。牛顿时空观认为空间是平直的、各向同性的和各点同性的的三维空间,时间是独立于空间的单独一维(因而也是绝对的)。狭义相对论认为空间和时间并不相互独立,而是一个统一的四维时空整体,并不存在绝对的空间和时间。在狭义相对论中,整个时空仍然是平直的、各向同性的和各点同性的,这是一种对应于“全局惯性系”的理想状况。狭义相对论将真空中光速为常数作为基本假设,结合狭义相对性原理和上述时空的性质可以推出洛仑兹变换。
广义相对论
主条目:广义相对论
广义相对论是爱因斯坦(Albert Einstein)在1915年发表的理论。爱因斯坦提出“等效原理”,即引力和惯性力是等效的。这一原理建立在引力质量与惯性质量的等价性上(目前实验证实,在10 − 12的精确度范围内,仍没有看到引力质量与惯性质量的差别)。根据等效原理,爱因斯坦把狭义相对性原理推广为广义相对性原理,即物理定律的形式在一切参考系都是不变的。物体的运动方程即该参考系中的测地线方程。测地线方程与物体自身故有性质无关,只取决于时空局域几何性质。而引力正是时空局域几何性质的表现。物质质量的存在会造成时空的弯曲,在弯曲的时空中,物体仍然顺着最短距离进行运动(即沿着测地线运动——在欧氏空间中即是直线运动),如地球在太阳造成的弯曲时空中的测地线运动,实际是绕着太阳转,造成引力作用效应。正如在弯曲的地球表面上,如果以直线运动,实际是绕着地球表面的大圆走
。
其实纯粹的科学对于我们普通人是没有用的因为你不是搞研究的太深了了解对你不是没用会提高自己的知识面但是我认为没必要太深追概念。对于我来说相对论是这么理解的。给你举个例子吧。你说一辆汽车以每小时二百公里的速度前进你说他是快还是慢呢?其实对于我们普通人来看就很快了。但是如果我们拿它的速度和行星的速度比起来就 和乌龟爬没有两样的。再一个例子,假如给你一台电脑你怎么判断他的好坏呢如果你的大脑中没有一个关于好坏的概念怎么来比较呢?如果你试了一下一个高端的电脑你再试试一个比较便宜的感觉会怎么样。难道你会认为那个便宜的好吗?如果真有时光机器的话你拿那台低端的电脑给发明电脑EIAC的科学家看他们会认为怎么样呢?可想而知,一个人的思维的判断判断的过程是不是通过和你脑子里的认识进行对比得出结论。而你得出的结论只是一个相对的结论啊、在一定的环境下是成立的但也是相对成立的。你听说过牛顿的三大定律吗?他的定律也是在特定的条件下才成立的。象这样的例子太多了希望你在生活中好好体会一下是不是这个理。
相对论是关于时空和引力的基本理论,主要由爱因斯坦创立,分为狭义相对论(特殊相对论)和广义相对论(一般相对论)。相对论的基本假设是光速不变原理,相对性原理和等效原理。相对论和量子力学是现代物理学的两大基本支柱。奠定了经典物理学基础的经典力学,不适用于高速运动的物体和微观条件下的物体。相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。相对论极大的改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”,“四维时空”“弯曲空间”等全新的概念。
狭义相对论
主条目:狭义相对论
狭义相对论,是只限于讨论惯性系情况的相对论。牛顿时空观认为空间是平直的、各向同性的和各点同性的的三维空间,时间是独立于空间的单独一维(因而也是绝对的)。狭义相对论认为空间和时间并不相互独立,而是一个统一的四维时空整体,并不存在绝对的空间和时间。在狭义相对论中,整个时空仍然是平直的、各向同性的和各点同性的,这是一种对应于“全局惯性系”的理想状况。狭义相对论将真空中光速为常数作为基本假设,结合狭义相对性原理和上述时空的性质可以推出洛仑兹变换。
广义相对论
主条目:广义相对论
广义相对论是爱因斯坦(Albert Einstein)在1915年发表的理论。爱因斯坦提出“等效原理”,即引力和惯性力是等效的。这一原理建立在引力质量与惯性质量的等价性上(目前实验证实,在10 − 12的精确度范围内,仍没有看到引力质量与惯性质量的差别)。根据等效原理,爱因斯坦把狭义相对性原理推广为广义相对性原理,即物理定律的形式在一切参考系都是不变的。物体的运动方程即该参考系中的测地线方程。测地线方程与物体自身故有性质无关,只取决于时空局域几何性质。而引力正是时空局域几何性质的表现。物质质量的存在会造成时空的弯曲,在弯曲的时空中,物体仍然顺着最短距离进行运动(即沿着测地线运动——在欧氏空间中即是直线运动),如地球在太阳造成的弯曲时空中的测地线运动,实际是绕着太阳转,造成引力作用效应。正如在弯曲的地球表面上,如果以直线运动,实际是绕着地球表面的大圆走
。
其实纯粹的科学对于我们普通人是没有用的因为你不是搞研究的太深了了解对你不是没用会提高自己的知识面但是我认为没必要太深追概念。对于我来说相对论是这么理解的。给你举个例子吧。你说一辆汽车以每小时二百公里的速度前进你说他是快还是慢呢?其实对于我们普通人来看就很快了。但是如果我们拿它的速度和行星的速度比起来就 和乌龟爬没有两样的。再一个例子,假如给你一台电脑你怎么判断他的好坏呢如果你的大脑中没有一个关于好坏的概念怎么来比较呢?如果你试了一下一个高端的电脑你再试试一个比较便宜的感觉会怎么样。难道你会认为那个便宜的好吗?如果真有时光机器的话你拿那台低端的电脑给发明电脑EIAC的科学家看他们会认为怎么样呢?可想而知,一个人的思维的判断判断的过程是不是通过和你脑子里的认识进行对比得出结论。而你得出的结论只是一个相对的结论啊、在一定的环境下是成立的但也是相对成立的。你听说过牛顿的三大定律吗?他的定律也是在特定的条件下才成立的。象这样的例子太多了希望你在生活中好好体会一下是不是这个理。
展开全部
相对论
爱因斯坦第一假设
谷锐
全部狭义相对论主要基于爱因斯坦对宇宙本性的两个假设。
第一个可以这样陈述:
所有惯性参照系中的物理规律是相同的
此处唯一稍有些难懂的地方是所谓的“惯性参照系”。举几个例子就可以解释清楚:
假设你正在一架飞机上,飞机水平地以每小时几百英里的恒定速度飞行,没有任何颠簸。一个人从机舱那边走过来,说:“把你的那袋花生扔过来好吗?”你抓起花生袋,但突然停了下来,想道:“我正坐在一架以每小时几百英里速度飞行的飞机上,我该用多大的劲扔这袋花生,才能使它到达那个人手上呢?”
不,你根本不用考虑这个问题,你只需要用与你在机场时相同的动作(和力气)投掷就行。花生的运动同飞机停在地面时一样。
你看,如果飞机以恒定的速度沿直线飞行,控制物体运动的自然法则与飞机静止时是一样的。我们称飞机内部为一个惯性参照系。(“惯性”一词原指牛顿第一运动定律。惯性是每个物体所固有的当没有外力作用时保持静止或匀速直线运动的属性。惯性参照系是一系列此规律成立的参照系。
另一个例子。让我们考查大地本身。地球的周长约40,000公里。由于地球每24小时自转一周,地球赤道上的一点实际上正以每小时1600公里的速度向东移动。然而我敢打赌说Steve Young在向Jerry Rice(二人都是橄榄球运动员。译者注)触地传球的时候,从未对此担心过。这是因为大地在作近似的匀速直线运动,地球表面几乎就是一个惯性参照系。因此它的运动对其他物体的影响很小,所有物体的运动都表现得如同地球处于静止状态一样。
实际上,除非我们意识到地球在转,否则有些现象会是十分费解的。(即,地球不是在沿直线运动,而是绕地轴作一个大的圆周运动)
例如:天气(变化)的许多方面都显得完全违反物理规律,除非我们对此(地球在转)加以考虑。另一个例子。远程炮弹并非象他们在惯性系中那样沿直线运动,而是略向右(在北半球)或向左(在南半球)偏。(室外运动的高尔夫球手们,这可不能用于解释你们的擦边球)对于大多数研究目的而言,我们可以将地球视为惯性参照系。但偶尔,它的非惯性表征将非常严重(我想把话说得严密一些)。
这里有一个最低限度:惯性系是一个静止或作匀速直线运动的系。爱因斯坦的第一假设使此类系中所有的物理规律都保持不变。运动的飞机和地球表面的例子只是用以向你解释这是一个平日里人们想都不用想就能作出的合理假设。谁说爱因斯坦是天才?
爱因斯坦第一假设
谷锐
全部狭义相对论主要基于爱因斯坦对宇宙本性的两个假设。
第一个可以这样陈述:
所有惯性参照系中的物理规律是相同的
此处唯一稍有些难懂的地方是所谓的“惯性参照系”。举几个例子就可以解释清楚:
假设你正在一架飞机上,飞机水平地以每小时几百英里的恒定速度飞行,没有任何颠簸。一个人从机舱那边走过来,说:“把你的那袋花生扔过来好吗?”你抓起花生袋,但突然停了下来,想道:“我正坐在一架以每小时几百英里速度飞行的飞机上,我该用多大的劲扔这袋花生,才能使它到达那个人手上呢?”
不,你根本不用考虑这个问题,你只需要用与你在机场时相同的动作(和力气)投掷就行。花生的运动同飞机停在地面时一样。
你看,如果飞机以恒定的速度沿直线飞行,控制物体运动的自然法则与飞机静止时是一样的。我们称飞机内部为一个惯性参照系。(“惯性”一词原指牛顿第一运动定律。惯性是每个物体所固有的当没有外力作用时保持静止或匀速直线运动的属性。惯性参照系是一系列此规律成立的参照系。
另一个例子。让我们考查大地本身。地球的周长约40,000公里。由于地球每24小时自转一周,地球赤道上的一点实际上正以每小时1600公里的速度向东移动。然而我敢打赌说Steve Young在向Jerry Rice(二人都是橄榄球运动员。译者注)触地传球的时候,从未对此担心过。这是因为大地在作近似的匀速直线运动,地球表面几乎就是一个惯性参照系。因此它的运动对其他物体的影响很小,所有物体的运动都表现得如同地球处于静止状态一样。
实际上,除非我们意识到地球在转,否则有些现象会是十分费解的。(即,地球不是在沿直线运动,而是绕地轴作一个大的圆周运动)
例如:天气(变化)的许多方面都显得完全违反物理规律,除非我们对此(地球在转)加以考虑。另一个例子。远程炮弹并非象他们在惯性系中那样沿直线运动,而是略向右(在北半球)或向左(在南半球)偏。(室外运动的高尔夫球手们,这可不能用于解释你们的擦边球)对于大多数研究目的而言,我们可以将地球视为惯性参照系。但偶尔,它的非惯性表征将非常严重(我想把话说得严密一些)。
这里有一个最低限度:惯性系是一个静止或作匀速直线运动的系。爱因斯坦的第一假设使此类系中所有的物理规律都保持不变。运动的飞机和地球表面的例子只是用以向你解释这是一个平日里人们想都不用想就能作出的合理假设。谁说爱因斯坦是天才?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
相对论简史
〔英〕史蒂芬•霍金著〔旅美学者〕翟宏营张岚译
十九世纪后期,科学家相信他们对宇宙的完整描述已经接近尾声。他们想象一种叫"以太"的连续介质充满了宇宙空间,就象空气中的声波一样,光线和电磁信号是"以太"中的波。
然而,与空间完全充满"以太"的思想相悖的结果不久就出现了:根据"以太"理论应得出,光线传播速度相对于"以太"应是一个定值,因此,如果你沿与光线传播相同的方向行进,你所测量到的光速应比你在静止时测量到的光速低;反之,如果你沿与光线传播相反的方向行进,你所测量到的光速应比你在静止时测量到的光速高。但是,一系列实验都没有找到造成光速差别的证据。
在这些实验当中,阿尔波特•迈克尔逊和埃迪沃德•莫里1887年在美国俄亥俄州克里夫兰的凯斯研究所所完成的测量,是最准确细致的。他们对比两束成直角的光线的传播速度,由于围着自转轴的转动和绕太阳的公转,根据推理,地球应穿行在"以太"中,因此上述成直角的两束光线应因地球的运动而测量到不同的速度,莫里发现,无论是昼夜或冬夏都未引起两束光线光速的不同。不论你是否运动,光线看起来总是以相对于你同样的速度传播。
爱尔兰物理学家乔治•费兹哥立德和荷兰物理学家亨卓克•洛仑兹,最早认为相对于"以太"运动的物体在运动方向的尺寸会收缩,而相对于"以太"运动的时钟会变慢。而对"以太",费兹哥立德和洛仑兹当时都认为是一种真实存在的物质。
这时候,工作在瑞士首都伯尔尼的瑞士专利局的一个名叫阿尔波特•爱因斯坦的年轻人,插手"以太"说,并一次性永远地解决了光传播速度的问题。
在1905年的文章中,爱因斯坦指出,由于你无法探测出你是否相对于"以太"的运动,因此,关于"以太"的整个概念是多余的。相反,爱因斯坦认为科学定律对所有自由运动的观察者都应有相同的形式,无论观察者是如何运动的,他们都应该测量到同样的光速。
爱因斯坦的这个思想,要求人们放弃所有时钟测量到的那个普适的时间概念,结果是,每个人都有他自己的时间值:如果两个人是相对静止的,那么,他们的时间就是一致的;如果他们间存在相互的运动,他们观察到的时间就是不同的。
大量的实验证明了爱因斯坦的这个思想是正确的,一个绕地球旋转的精确的时钟,与存放在实验室中的精确时钟确有时间指示上的差别。如果你想延长你的生命,你就可以乘飞机向东飞行,这样可以叠加上地球旋转的速度,你无论如何可以获得那零点几秒的生命延长,也可以以此弥补因你进食航空食品而带来的损害。
爱因斯坦认为的对所有自由运动的观察者自然定律都相同这个前提,是相对论的基础,这样说的原因是因为,这个前提隐含了只有相对运动是重要的。虽然相对论的完美与简洁折服了许许多多科学家和哲学家,但是仍然有很多的相反意见。爱因斯坦摒弃了19世纪自然科学的两个绝对化观念:"以太"所隐含的绝对静止和所有时钟所测量得到的绝对或普适时间。人们不禁要问:相对论是否隐含了任何事物都是相对的而不再会有概念上绝对的标准了?
这种不安从20世纪20年代一直持续到30年代。1921年,爱因斯坦由于对光电效应的贡献,得到了诺贝尔物理奖【注1】,但由于相对论的复杂及有争议,诺贝尔奖的授予只字未提相对论。
到现在我仍然每周收到2至3封信,告诉我爱因斯坦错了。尽管如此,现在相对论被科学界完全接受,相对论的预言已经被无数的实验所证实。
相对论的一个重要结果是质量与能量的关系。爱因斯坦的假定光速对所有的观察者是相同的,暗示了没有可以超过光速运行的事物,如果给粒子或宇宙飞船不断地供应能量,会发生什么现象呢?被加速物体的质量就会增大,使得很难进行再快的加速,要想把一个粒子加速到光速是不可能的,因为那需要无限大的能量。质量与能量的等价关系被爱因斯坦总结在他的著名的质能方程"E=mc2"中,这或许是能被大街小巷妇孺皆知的唯一一个物理方程了。
铀原子核裂变成两个小的原子核时,由于很小一点的质量亏损,会释放出巨大的能量。这就是质能方程众多结论中的一个。1939年,第二次世界大战正阴云密布,一组意识到裂变反应应用的科学家说服爱因斯坦战胜自己是和平主义者的顾忌,去给当时的美国总统富兰克林•德拉诺•罗斯福写信,劝说美国开始核研究计划,这铸就了曼哈顿工程和1945年在广岛上空原子弹的爆炸。有人因原子弹而责备爱因斯坦发现了质能关系,但是这种责难就像因有飞机遇难折戟而责备牛顿发现了万有引力一样。爱因斯坦没有参与曼哈顿工程的任何过程并惊惧于那巨大的爆炸。
尽管相对论与电磁理论的有关定律结合得非常完美,但它与牛顿的重力定律不相容。牛顿的重力理论表明,如果你改变空间的物质分布,整个宇宙中重力场的改变是同时发生的,这不但意味着你可以发送比光速传播更快的信号(这是为相对论所不容的),而且需要绝对或普适的时间概念,这又是为相对论所抛弃的。
爱因斯坦从1907年就知道了这个不相容的困难,那时他还在波恩的专利局工作,但直到1911年,爱因斯坦在德国的布拉格工作时,他才深入思考这个问题。爱因斯坦意识到加速与重力场的密切关系,在密封厢中的人,无法区分他自己对地板的压力是由于他处在地球的重力场中的结果,还是由于在无引力空间中他被火箭加速所造成的。(这些都发生在"星际旅行"【注2】的时代之前,爱因斯坦是想到人处在电梯中而不是宇宙飞船中。但我们知道,如果不想让电梯碰撞的事情发生,你不能在电梯中加速或自由坠落许久)如果地球是完全平整的,人们可以说苹果因重力落在牛顿头上,与因牛顿与地球表面加速上升而造成了牛顿的头撞在苹果上是等价的。但是,这种加速与重力的等价在地球是圆形的前提下不再成立,因为在地球相反一面的人将会被反向加速,但两面观察者之间的距离却是不变的。
1912年在转回瑞士苏黎士时,爱因斯坦来了灵感,他意识到如果真实几何中引入一些调整,重力与加速的等价关系就可以成立。爱因斯坦想象,如果三维空间加上第四维的时间所形成的空间-时间实体是弯曲的,那结果是怎样的呢?他的思想是,质量和能量将会造成时空的弯曲,这在某些方面或许已经被证明。像行星和苹果,物体将趋向直线运动,但是,他们的径迹看起来会被重力场弯曲,因为时空被重力场弯曲了。
在他的朋友马歇尔•格卢斯曼的帮助下,爱因斯坦学习弯曲空间及表面的理论,这些抽象的理论,在玻恩哈德•瑞曼将它们发展起来时,从未想到与真实世界会有联系。1913年,在爱因斯坦与格卢斯曼合作发表的文章中,他们提出了一个思想:我们所认识的重力,只是时空是弯曲的事实的一种表述。但是,由于爱因斯坦的一个失误(爱因斯坦是个真正的人,也会犯错误),他们当时未能找出联系时空弯曲的曲率与蕴含于其中的能量质量的关系方程。
在柏林时,爱因斯坦继续就这个问题进行工作,他没有了家庭的烦扰【注3】,在很大程度上也未被战争所影响。1915年11月,爱因斯坦最终发现了联系时空弯曲与蕴含其中的能量质量的关系方程式。1915年夏天,在访问哥廷根大学期间,爱因斯坦曾与数学家戴维•希尔波特讨论过他的这个思想,希尔波特早于爱因斯坦几天也找到了同样的方程式。尽管如此,正如希尔波特所承认的,这种新理论的荣誉应属于爱因斯坦,而正是爱因斯坦将重力与弯曲时空联系起来。这还应感谢文明的德国,因为,是在那里,在当时的战争期间,这样的科学讨论及交流仍能够得以不受影响地进行,与20年后(指二战,编者注)所发生的事形成多么大的对比!
关于弯曲时空的新理论叫做"广义相对论",以区别与原初不包含重力的理论,而那个理论被改称为"狭义相对论"。1919年,"广义相对论"被以颇为壮观的形式证明:当时的一只英国科学考察队远征到西非,在日食期间观察到天空中太阳附近一颗恒星位置的微小移动。正如爱因斯坦所预言的:恒星所发出的光线,在经过太阳附近时,由于太阳的引力而弯曲了。这是证明时空弯曲的一个直接证据,从公元前300年欧几里得完成他的《原本》后,这是一个人类感知他们存在于宇宙的最大的革命性的更新。
爱因斯坦的"广义相对论"将"时空"由被动的事件发生背景转化为动态宇宙中的主动参与者,这导致了居于科学前沿的一个巨大困难,在20世纪结束之际仍未解决。宇宙充满了物质,物质又导致时空弯曲而使得物体相互聚集。在用"广义相对论"解释静态的宇宙时,爱因斯坦发现他的方程式是无解的,为变通他的方程式而适应静态宇宙,爱因斯坦加入了一个称为"宇宙常量"的项,这个"宇宙常量"将时空再弯曲,以使所有的物体分离开,"宇宙"常量引入的排斥效果将平衡物体的相互吸引作用而允许宇宙的长久平衡。
事实上,这成了在理论物理历史上人类丧失的最大机遇之一。如果爱因斯坦继续在这一方向上工作下去而不是变通的引入"宇宙常量",他可能能够预言宇宙是在扩张还是在收缩。然而,直到20年代,当坐落在威尔逊山上的100英寸的天文望远镜观察到离我们越远的星系在以越快的速度远离我们时,宇宙依时间而变化的可能性才被郑重地加以考虑。换一句话说,宇宙正在扩展,任何两个星系之间的距离正在随着时间的推移而稳定地增加。爱因斯坦后来称"宇宙常量"的提出是他一生中最严重的错误。
"广义相对论"彻底改变了人们对宇宙的起源及归宿的讨论方向。静止的宇宙可能会永久存在,或者说,在过去的某个时间,当这一静止的宇宙产生时,它就已经是现在的形态了。从另一方面来说,如果现在星系们正在彼此远离,它们在过去的时间里应该是彼此之间更为接近的。在大约150亿年前,它们甚至可能彼此接触,相互重叠,而且它们的密度可能是无穷大。根据"广义相对论",宇宙大爆炸标志着宇宙的起源,时间的开始。从这个意义上说,爱因斯坦不仅仅是过去100年中最伟大的人物,他应该获得人们更长久的尊重。
在黑洞中,空间与时间是如此的弯曲,以至于黑洞吸收了所有的光线,没有一丝光线可以逃逸。"广义相对论"因此预言时间应终止于黑洞中。但是,广义相对论方程并不适用于时间的开始与终结这两种极端情形。因而这一理论并不能揭示从大爆炸中究竟产生了什么。一些人认为这是上帝万能的一种象征,上帝可以以他想要的方式来开创宇宙。
但是另一些人(包括我自己)认为宇宙的起源应该服从于一种任何时候都成立的普适原理。在朝这一方向的努力中,我们已取得了一些进展,但距完全理解宇宙的起源还相差甚远。广义相对论不能适用于大爆炸的原因在于,它与20世纪初另一伟大的概念性的突破---量子理论并不相容。量子理论的最初提出是在1900年,当时在柏林工作的麦克斯•普朗发现,从红热物体上发出的辐射可以解释为光线是以有特定大小的能量单元发出的,普朗克把这种能量单元称为量子。打一个比方,辐射像是一包包的白糖,在超级市场里,并不是你想要多少的量都行,你只能买每袋一磅的包装。1905年,爱因斯坦在他撰写的一篇论文中,提到普朗克的量子假设可能可以解释光电效应,即某些金属在收到光照时会释放电子的现象。这一效应是现代光探测器和电视照相得以应用的基础,爱因斯坦也因此获得了1921年的诺贝尔奖。
爱因斯坦对量子构想的研究直至20年代,当时哥本哈根的华纳•海森堡、剑桥的保尔•狄拉克以及苏黎士的埃文•薛定谔提出了量子机制,从而展示了描述现实的新画卷。根据他们的理论,小粒子不再具有确定的位置和速度,相反,小粒子的位置测得越精确,它的速度测量就愈不准确。反之亦然。
对于这种基本定律中的任意性和不可预知性,爱因斯坦惶惑不已,他最终未能接受量子机制。他的著名的"上帝并未在掷骰子"的格言就表达出了这一感受。虽然如此,大多数科学家都接受了全新的量子机制定律,并对其适用性加以承认,因为这些定律不但与实验结果吻合极好,而且可以解释许多先前无法解释的现象。这些定律成了当代化学、分子生物学以及电子学得以发展的基础,也是在过去半个世纪内改变整个世界的科技基石。
1933年,纳粹统治了德国,爱因斯坦离开了这个国家,也放弃了他的德国国籍。他在新泽西州普林斯顿的尖端科学研究所度过了他生命最后22年的时光。纳粹发起了一场反对"犹太科学"及犹太科学家的运动(犹太科学家被驱逐是德国未能建成原子弹的原因之一),而爱因斯坦及他的相对论是这场运动的主要目标。当被告知一本名为《反对爱因斯坦的100位科学家》的书得以出版时,爱因斯坦回答,为什么要100位?一位就足以证明我错了,如果我真的错了的话。
二战后,他敦促盟军设立一个全球机构以控制核武器。1952年,他被刚成立的以色列授予总统职位,但他拒绝了。"政治是暂时的,"他写道,"而方程式是永恒的。"广义相对论方程是他最好的墓志铭和纪念碑。它们与宇宙一起永不腐朽。
在过去的100年中,世界经历了前所未有的变化。其原因并不在于政治,也不在于经济,而在于科学技术---直接源于先进的基础科学研究的科学技术。没有科学家能比爱因斯坦更代表这种科学的先进性。(本文略有删节)
〔英〕史蒂芬•霍金著〔旅美学者〕翟宏营张岚译
十九世纪后期,科学家相信他们对宇宙的完整描述已经接近尾声。他们想象一种叫"以太"的连续介质充满了宇宙空间,就象空气中的声波一样,光线和电磁信号是"以太"中的波。
然而,与空间完全充满"以太"的思想相悖的结果不久就出现了:根据"以太"理论应得出,光线传播速度相对于"以太"应是一个定值,因此,如果你沿与光线传播相同的方向行进,你所测量到的光速应比你在静止时测量到的光速低;反之,如果你沿与光线传播相反的方向行进,你所测量到的光速应比你在静止时测量到的光速高。但是,一系列实验都没有找到造成光速差别的证据。
在这些实验当中,阿尔波特•迈克尔逊和埃迪沃德•莫里1887年在美国俄亥俄州克里夫兰的凯斯研究所所完成的测量,是最准确细致的。他们对比两束成直角的光线的传播速度,由于围着自转轴的转动和绕太阳的公转,根据推理,地球应穿行在"以太"中,因此上述成直角的两束光线应因地球的运动而测量到不同的速度,莫里发现,无论是昼夜或冬夏都未引起两束光线光速的不同。不论你是否运动,光线看起来总是以相对于你同样的速度传播。
爱尔兰物理学家乔治•费兹哥立德和荷兰物理学家亨卓克•洛仑兹,最早认为相对于"以太"运动的物体在运动方向的尺寸会收缩,而相对于"以太"运动的时钟会变慢。而对"以太",费兹哥立德和洛仑兹当时都认为是一种真实存在的物质。
这时候,工作在瑞士首都伯尔尼的瑞士专利局的一个名叫阿尔波特•爱因斯坦的年轻人,插手"以太"说,并一次性永远地解决了光传播速度的问题。
在1905年的文章中,爱因斯坦指出,由于你无法探测出你是否相对于"以太"的运动,因此,关于"以太"的整个概念是多余的。相反,爱因斯坦认为科学定律对所有自由运动的观察者都应有相同的形式,无论观察者是如何运动的,他们都应该测量到同样的光速。
爱因斯坦的这个思想,要求人们放弃所有时钟测量到的那个普适的时间概念,结果是,每个人都有他自己的时间值:如果两个人是相对静止的,那么,他们的时间就是一致的;如果他们间存在相互的运动,他们观察到的时间就是不同的。
大量的实验证明了爱因斯坦的这个思想是正确的,一个绕地球旋转的精确的时钟,与存放在实验室中的精确时钟确有时间指示上的差别。如果你想延长你的生命,你就可以乘飞机向东飞行,这样可以叠加上地球旋转的速度,你无论如何可以获得那零点几秒的生命延长,也可以以此弥补因你进食航空食品而带来的损害。
爱因斯坦认为的对所有自由运动的观察者自然定律都相同这个前提,是相对论的基础,这样说的原因是因为,这个前提隐含了只有相对运动是重要的。虽然相对论的完美与简洁折服了许许多多科学家和哲学家,但是仍然有很多的相反意见。爱因斯坦摒弃了19世纪自然科学的两个绝对化观念:"以太"所隐含的绝对静止和所有时钟所测量得到的绝对或普适时间。人们不禁要问:相对论是否隐含了任何事物都是相对的而不再会有概念上绝对的标准了?
这种不安从20世纪20年代一直持续到30年代。1921年,爱因斯坦由于对光电效应的贡献,得到了诺贝尔物理奖【注1】,但由于相对论的复杂及有争议,诺贝尔奖的授予只字未提相对论。
到现在我仍然每周收到2至3封信,告诉我爱因斯坦错了。尽管如此,现在相对论被科学界完全接受,相对论的预言已经被无数的实验所证实。
相对论的一个重要结果是质量与能量的关系。爱因斯坦的假定光速对所有的观察者是相同的,暗示了没有可以超过光速运行的事物,如果给粒子或宇宙飞船不断地供应能量,会发生什么现象呢?被加速物体的质量就会增大,使得很难进行再快的加速,要想把一个粒子加速到光速是不可能的,因为那需要无限大的能量。质量与能量的等价关系被爱因斯坦总结在他的著名的质能方程"E=mc2"中,这或许是能被大街小巷妇孺皆知的唯一一个物理方程了。
铀原子核裂变成两个小的原子核时,由于很小一点的质量亏损,会释放出巨大的能量。这就是质能方程众多结论中的一个。1939年,第二次世界大战正阴云密布,一组意识到裂变反应应用的科学家说服爱因斯坦战胜自己是和平主义者的顾忌,去给当时的美国总统富兰克林•德拉诺•罗斯福写信,劝说美国开始核研究计划,这铸就了曼哈顿工程和1945年在广岛上空原子弹的爆炸。有人因原子弹而责备爱因斯坦发现了质能关系,但是这种责难就像因有飞机遇难折戟而责备牛顿发现了万有引力一样。爱因斯坦没有参与曼哈顿工程的任何过程并惊惧于那巨大的爆炸。
尽管相对论与电磁理论的有关定律结合得非常完美,但它与牛顿的重力定律不相容。牛顿的重力理论表明,如果你改变空间的物质分布,整个宇宙中重力场的改变是同时发生的,这不但意味着你可以发送比光速传播更快的信号(这是为相对论所不容的),而且需要绝对或普适的时间概念,这又是为相对论所抛弃的。
爱因斯坦从1907年就知道了这个不相容的困难,那时他还在波恩的专利局工作,但直到1911年,爱因斯坦在德国的布拉格工作时,他才深入思考这个问题。爱因斯坦意识到加速与重力场的密切关系,在密封厢中的人,无法区分他自己对地板的压力是由于他处在地球的重力场中的结果,还是由于在无引力空间中他被火箭加速所造成的。(这些都发生在"星际旅行"【注2】的时代之前,爱因斯坦是想到人处在电梯中而不是宇宙飞船中。但我们知道,如果不想让电梯碰撞的事情发生,你不能在电梯中加速或自由坠落许久)如果地球是完全平整的,人们可以说苹果因重力落在牛顿头上,与因牛顿与地球表面加速上升而造成了牛顿的头撞在苹果上是等价的。但是,这种加速与重力的等价在地球是圆形的前提下不再成立,因为在地球相反一面的人将会被反向加速,但两面观察者之间的距离却是不变的。
1912年在转回瑞士苏黎士时,爱因斯坦来了灵感,他意识到如果真实几何中引入一些调整,重力与加速的等价关系就可以成立。爱因斯坦想象,如果三维空间加上第四维的时间所形成的空间-时间实体是弯曲的,那结果是怎样的呢?他的思想是,质量和能量将会造成时空的弯曲,这在某些方面或许已经被证明。像行星和苹果,物体将趋向直线运动,但是,他们的径迹看起来会被重力场弯曲,因为时空被重力场弯曲了。
在他的朋友马歇尔•格卢斯曼的帮助下,爱因斯坦学习弯曲空间及表面的理论,这些抽象的理论,在玻恩哈德•瑞曼将它们发展起来时,从未想到与真实世界会有联系。1913年,在爱因斯坦与格卢斯曼合作发表的文章中,他们提出了一个思想:我们所认识的重力,只是时空是弯曲的事实的一种表述。但是,由于爱因斯坦的一个失误(爱因斯坦是个真正的人,也会犯错误),他们当时未能找出联系时空弯曲的曲率与蕴含于其中的能量质量的关系方程。
在柏林时,爱因斯坦继续就这个问题进行工作,他没有了家庭的烦扰【注3】,在很大程度上也未被战争所影响。1915年11月,爱因斯坦最终发现了联系时空弯曲与蕴含其中的能量质量的关系方程式。1915年夏天,在访问哥廷根大学期间,爱因斯坦曾与数学家戴维•希尔波特讨论过他的这个思想,希尔波特早于爱因斯坦几天也找到了同样的方程式。尽管如此,正如希尔波特所承认的,这种新理论的荣誉应属于爱因斯坦,而正是爱因斯坦将重力与弯曲时空联系起来。这还应感谢文明的德国,因为,是在那里,在当时的战争期间,这样的科学讨论及交流仍能够得以不受影响地进行,与20年后(指二战,编者注)所发生的事形成多么大的对比!
关于弯曲时空的新理论叫做"广义相对论",以区别与原初不包含重力的理论,而那个理论被改称为"狭义相对论"。1919年,"广义相对论"被以颇为壮观的形式证明:当时的一只英国科学考察队远征到西非,在日食期间观察到天空中太阳附近一颗恒星位置的微小移动。正如爱因斯坦所预言的:恒星所发出的光线,在经过太阳附近时,由于太阳的引力而弯曲了。这是证明时空弯曲的一个直接证据,从公元前300年欧几里得完成他的《原本》后,这是一个人类感知他们存在于宇宙的最大的革命性的更新。
爱因斯坦的"广义相对论"将"时空"由被动的事件发生背景转化为动态宇宙中的主动参与者,这导致了居于科学前沿的一个巨大困难,在20世纪结束之际仍未解决。宇宙充满了物质,物质又导致时空弯曲而使得物体相互聚集。在用"广义相对论"解释静态的宇宙时,爱因斯坦发现他的方程式是无解的,为变通他的方程式而适应静态宇宙,爱因斯坦加入了一个称为"宇宙常量"的项,这个"宇宙常量"将时空再弯曲,以使所有的物体分离开,"宇宙"常量引入的排斥效果将平衡物体的相互吸引作用而允许宇宙的长久平衡。
事实上,这成了在理论物理历史上人类丧失的最大机遇之一。如果爱因斯坦继续在这一方向上工作下去而不是变通的引入"宇宙常量",他可能能够预言宇宙是在扩张还是在收缩。然而,直到20年代,当坐落在威尔逊山上的100英寸的天文望远镜观察到离我们越远的星系在以越快的速度远离我们时,宇宙依时间而变化的可能性才被郑重地加以考虑。换一句话说,宇宙正在扩展,任何两个星系之间的距离正在随着时间的推移而稳定地增加。爱因斯坦后来称"宇宙常量"的提出是他一生中最严重的错误。
"广义相对论"彻底改变了人们对宇宙的起源及归宿的讨论方向。静止的宇宙可能会永久存在,或者说,在过去的某个时间,当这一静止的宇宙产生时,它就已经是现在的形态了。从另一方面来说,如果现在星系们正在彼此远离,它们在过去的时间里应该是彼此之间更为接近的。在大约150亿年前,它们甚至可能彼此接触,相互重叠,而且它们的密度可能是无穷大。根据"广义相对论",宇宙大爆炸标志着宇宙的起源,时间的开始。从这个意义上说,爱因斯坦不仅仅是过去100年中最伟大的人物,他应该获得人们更长久的尊重。
在黑洞中,空间与时间是如此的弯曲,以至于黑洞吸收了所有的光线,没有一丝光线可以逃逸。"广义相对论"因此预言时间应终止于黑洞中。但是,广义相对论方程并不适用于时间的开始与终结这两种极端情形。因而这一理论并不能揭示从大爆炸中究竟产生了什么。一些人认为这是上帝万能的一种象征,上帝可以以他想要的方式来开创宇宙。
但是另一些人(包括我自己)认为宇宙的起源应该服从于一种任何时候都成立的普适原理。在朝这一方向的努力中,我们已取得了一些进展,但距完全理解宇宙的起源还相差甚远。广义相对论不能适用于大爆炸的原因在于,它与20世纪初另一伟大的概念性的突破---量子理论并不相容。量子理论的最初提出是在1900年,当时在柏林工作的麦克斯•普朗发现,从红热物体上发出的辐射可以解释为光线是以有特定大小的能量单元发出的,普朗克把这种能量单元称为量子。打一个比方,辐射像是一包包的白糖,在超级市场里,并不是你想要多少的量都行,你只能买每袋一磅的包装。1905年,爱因斯坦在他撰写的一篇论文中,提到普朗克的量子假设可能可以解释光电效应,即某些金属在收到光照时会释放电子的现象。这一效应是现代光探测器和电视照相得以应用的基础,爱因斯坦也因此获得了1921年的诺贝尔奖。
爱因斯坦对量子构想的研究直至20年代,当时哥本哈根的华纳•海森堡、剑桥的保尔•狄拉克以及苏黎士的埃文•薛定谔提出了量子机制,从而展示了描述现实的新画卷。根据他们的理论,小粒子不再具有确定的位置和速度,相反,小粒子的位置测得越精确,它的速度测量就愈不准确。反之亦然。
对于这种基本定律中的任意性和不可预知性,爱因斯坦惶惑不已,他最终未能接受量子机制。他的著名的"上帝并未在掷骰子"的格言就表达出了这一感受。虽然如此,大多数科学家都接受了全新的量子机制定律,并对其适用性加以承认,因为这些定律不但与实验结果吻合极好,而且可以解释许多先前无法解释的现象。这些定律成了当代化学、分子生物学以及电子学得以发展的基础,也是在过去半个世纪内改变整个世界的科技基石。
1933年,纳粹统治了德国,爱因斯坦离开了这个国家,也放弃了他的德国国籍。他在新泽西州普林斯顿的尖端科学研究所度过了他生命最后22年的时光。纳粹发起了一场反对"犹太科学"及犹太科学家的运动(犹太科学家被驱逐是德国未能建成原子弹的原因之一),而爱因斯坦及他的相对论是这场运动的主要目标。当被告知一本名为《反对爱因斯坦的100位科学家》的书得以出版时,爱因斯坦回答,为什么要100位?一位就足以证明我错了,如果我真的错了的话。
二战后,他敦促盟军设立一个全球机构以控制核武器。1952年,他被刚成立的以色列授予总统职位,但他拒绝了。"政治是暂时的,"他写道,"而方程式是永恒的。"广义相对论方程是他最好的墓志铭和纪念碑。它们与宇宙一起永不腐朽。
在过去的100年中,世界经历了前所未有的变化。其原因并不在于政治,也不在于经济,而在于科学技术---直接源于先进的基础科学研究的科学技术。没有科学家能比爱因斯坦更代表这种科学的先进性。(本文略有删节)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询