请教一道高数证明题?

设f(x)在[0,1]上连续,f(0)=f(1).证明:对自然数n>=2,必有m属于(0,1),使得f(m)=f(m+1/n).第一位给出的证明好象有问题嘛?... 设f(x)在[0,1]上连续,f(0)=f(1).证明:对自然数n>=2,必有m属于(0,1),使得f(m)=f(m+1/n).
第一位给出的证明好象有问题嘛?
展开
 我来答
百度网友64f75be
2006-08-21
知道答主
回答量:71
采纳率:0%
帮助的人:0
展开全部
证明:将m改为x,设F(x) = f(x)-f(x+1/n)
因为f(x)在[0,1]上连续,所以F(x)在[0,1]上连续,得:
F(0) = f(0)-f(1/n)
F(1/n) = f(1/n)-f(2/n)
F(2/n) = f(2/n)-f(3/n)
……
F(n-2/n) = f(n-2/n)-f(n-1/n)
F(n-1/n) = f(n-1/n)-f(1)
将上面n个式子相加,得:F(0)+F(1/n)+……+F(n-1/n)=f(1)-f(0)=0(*)
所以由(*)式可知:必存在a,b属于(0,1),使得F(a)*F(b)<0,又F(x)在[0,1]上连续,所以由零点定理可知:存在m属于(a,b)包含于(0,1),使得f(m)=f(m+1/n).
supersarah
2006-08-21 · TA获得超过7149个赞
知道大有可为答主
回答量:2623
采纳率:80%
帮助的人:1189万
展开全部
当 n = 2 时,f(x) 是 [0,1/2] 区间上,过两点 (0, f(0)), (1/2, f(1/2)) 的连续函数

令 f2(x) = f(x+1/2),则 f2(x) 是在 [0,1/2] 区间上,过两点 (0, f2(0)),(1/2, f2(1/2)) 的连续函数

实际上,f2(0) = f(1/2); f2(1/2) = f(1) = f(0),
因此,f2(x) 是过两点 (0, f(1/2)), (1/2, f(0))
的连续函数

不难证明,f(x) 和 f2(x) 在区间 (0,1/2) 上必有交点

对于其他 n>=2,可以按如下方法构造函数:
在 [0, 1/n] 上的连续函数 f(x)
函数过两点 (0, f(0)) 和 (1/n, f(1/n))

在 [1/n, 1] 上的连续函数 fn(x) = f((n-1)x+1/n)
函数过两点 (0,fn(0)), (1/n, fn(1/n))
而 fn(0) = f(1/n),fn(1/n)=f(1)=f(0)

这两个函数在区间 (0, 1/n) 上必有交点

该交点即满足 f(m) = f(m+1/n)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式