已知正整数a、b、c满足不等式:a^2+b^2+c^2+3<ab+3b+2c,则已a,b,c为边长的线段是否能组成三角形?

已知正整数a、b、c满足不等式:a^2+b^2+c^2+3<ab+3b+2c,则已a,b,c为边长的线段是否能组成三角形?需要步骤,谢谢... 已知正整数a、b、c满足不等式:a^2+b^2+c^2+3<ab+3b+2c,则已a,b,c为边长的线段是否能组成三角形?
需要步骤,谢谢
展开
370116
高赞答主

2006-08-22 · 你的赞同是对我最大的认可哦
知道顶级答主
回答量:9.6万
采纳率:76%
帮助的人:6.2亿
展开全部
a^2+b^2+c^2+3<ab+3b+2c
等价为:
a^2-ab+(1/4)b^2+(3/4)b^2-3b+3+c^2-2c+1<1
[a^2-ab+(1/4)b^2]+3*[(1/4)b^2-b+1]+[c^2-2c+1]<1

[a-(1/2)b]^2+3*[(1/2)b-1]^2+(c-1)^2<1
因为abc都是整数 (c-1)^2<1 所以 c=1
又因为 [a-(1/2)b]^2<1 所以 (2a-b)^2<4 所以: 2a-b=0 或 2a-b=1或-1
再由 3*[(1/2)b-1]^2<1 所以 (b-2)^2<4/3 所以: b-2=0 或 b-2=1或-1
由上面得出:
a=0 b=1 c=1
a=1 b=1 c=1
a=1 b=2 c=1
a=1 b=3 c=1
a=2 b=3 c=1
再次 带入原式a^2+b^2+c^2+3<ab+3b+2c检验:
得出结果:
a=1 b=2 c=1
为满足条件的结果。

b=a+c

所以不能组成三角形。
百度网友e426c8b38
2006-08-22 · TA获得超过119个赞
知道答主
回答量:207
采纳率:0%
帮助的人:0
展开全部
我打字慢!所以就不答你的问题了!!!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式