
已知X,Y,Z都是正数,且XYZ(X+Y+Z)=1,求证:(X+Y)(Y+Z)>=2
1个回答
展开全部
(x+y)(z+y)=xz+y(x+y+z)
因xyz(x+y+z)=1
x+y+z=1/xyz
(x+y)(z+y)
=xz+y(x+y+z)
=xz+1/xz
=(√xy-1/√xy)^2+2>=2
因xyz(x+y+z)=1
x+y+z=1/xyz
(x+y)(z+y)
=xz+y(x+y+z)
=xz+1/xz
=(√xy-1/√xy)^2+2>=2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询