展开全部
一、质点的运动(1)------直线运动
(1)匀变速直线运动
1.平均速度V平=s/t(定义式)
2.有用推论Vt2-Vo2=2as
3.中间时刻速度Vt/2=V平=(Vt+Vo)/2
4.末速度Vt=Vo+at
5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2
6.位移s=V平t=Vot+at2/2=Vt/2t
7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}
8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}
9.主要物理量及单位:初速度(Vo):m/s;
加速度(a):m/s2;
末速度(Vt):m/s;
时间(t)秒(s);
位移(s):米(m);
路程:米;速度单位换算:1m/s=3.6km/h。
注:
(1)平均速度是矢量;
(2)物体速度大,加速度不一定大;
(3)a=(Vt-Vo)/t只是量度式,不是决定式;
(4)其它相关内容:质点、位移和路程、参考系、时间与时刻
〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。
2)自由落体运动
1.初速度Vo=0
2.末速度Vt=gt
3.下落高度h=gt2/2(从Vo位置向下计算)
4.推论Vt2=2gh
注:
(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;
(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。
(3)竖直上抛运动
1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)
3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起)
5.往返时间t=2Vo/g (从抛出落回原位置的时间)
注:
(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;
(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;
(3)上升与下落过程具有对称性,如在同点速度等值反向等。
二、质点的运动(2)----曲线运动、万有引力
1)平抛运动
1.水平方向速度:Vx=Vo
2.竖直方向速度:Vy=gt
3.水平方向位移:x=Vot
4.竖直方向位移:y=gt2/2
5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)
6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2
合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0
7.合位移:s=(x2+y2)1/2,
位移方向与水平夹角α:tgα=y/x=gt/2Vo
8.水平方向加速度:ax=0;竖直方向加速度:ay=g
注:
(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;
(2)运动时间由下落高度h(y)决定与水平抛出速度无关;
(3)θ与β的关系为tgβ=2tgα;
(4)在平抛运动中时间t是解题关键;
(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。
2)匀速圆周运动
1.线速度V=s/t=2πr/T
2.角速度ω=Φ/t=2π/T=2πf
3.向心加速度a=V2/r=ω2r=(2π/T)2r
4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合
5.周期与频率:T=1/f
6.角速度与线速度的关系:V=ωr
7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)
8.主要物理量及单位:
弧长(s):米(m);
角度(Φ):弧度(rad);
频率(f):赫(Hz);
周期(T):秒(s);
转速(n):r/s;
半径(r):米(m);
线速度(V):m/s;]
角速度(ω):rad/s;
向心加速度:m/s2。
注:
(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;
(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,
不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。
(3)万有引力
1.开普勒第三定律: T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}
2.万有引力定律: F=Gm1m2/r2 G=6.67×10-11N?m2/kg2,方向在它们的连线上)
3.天体上的重力和重力加速度:GMm/R2=mg; g=GM/R2{R:天体半径(m),M:天体质量(kg)}
4.卫星绕行速度、角速度、周期: V=(GM/r)1/2;ω=(GM/r3)1/2; T=2π(r3/GM)1/2 {M:中心天体质量}
5.第一(二、三)宇宙速度 V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s; V2=11.2km/s;
V3=16.7km/s
6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}
注:
(1)天体运动所需的向心力由万有引力提供,F向=F万;
(2)应用万有引力定律可估算天体的质量密度等;
(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;
(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);
(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。
三、力(常见的力、力的合成与分解)
1)常见的力
1.重力G=mg (方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)
2.胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}
3.滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}
4.静摩擦力0≤f静≤fm(与物体相对运动趋势方向相反,fm为最大静摩擦力)
5.万有引力F=Gm1m2/r2(G=6.67×10-11N?m2/kg2,方向在它们的连线上)
6.静电力F=kQ1Q2/r2 (k=9.0×109N?m2/C2,方向在它们的连线上)
7.电场力F=Eq(E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)
8.安培力F=BILsinθ(θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)
9.洛仑兹力f=qVBsinθ(θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)
注:
(1)劲度系数k由弹簧自身决定;
(2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定;
(3)fm略大于μFN,一般视为fm≈μFN
(4)其它相关内容:静摩擦力(大小、方向)〔见第一册P8〕;
(5)物理量符号及单位
B:磁感强度(T),
L:有效长度(m),
I:电流强度(A),
V:带电粒子速度(m/s),
q:带电粒子(带电体)
电量(C);
(6)安培力与洛仑兹力方向均用左手定则判定。
2)力的合成与分解
1.同一直线上力的合成同向: F=F1+F2,反向: F=F1-F2 (F1>F2)
2.互成角度力的合成: F=(F12+F22+2F1F2cosα)1/2(余弦定理)F1⊥F2时:F=(F12+F22)1/2
3.合力大小范围:|F1-F2|≤F≤|F1+F2|
4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ β为合力与x轴之间的夹角tgβ=Fy/Fx)
注:
(1)力(矢量)的合成与分解遵循平行四边形定则;
(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;
(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;
(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;
(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。
四、动力学(运动和力)
1.牛顿第一运动定律(惯性定律):
物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止
2.牛顿第二运动定律:
F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}
3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}
4.共点力的平衡F合=0,推广正交分解法、三力汇交原理}
5.超重FN>G,失重:FN<G {加速度方向向下,均失重,加速度方向向上,均超重}]
6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子〔见第一册P67〕
注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。
五、振动和波
(机械振动与机械振动的传播)
1.简谐振动F=-kx{F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}
2.单摆周期T=2π(l/g)1/2{l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}
3.受迫振动频率特点:f=f驱动力
4.发生共振条件: f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕
5.机械波、横波、纵波〔见第二册P2〕
6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}
7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)
8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大
9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)
10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕}
注:
(1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;
(2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处;
(3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式;
(4)干涉与衍射是波特有的;
(5)振动图象与波动图象;
(6)其它相关内容:超声波及其应用〔见第二册P22〕/振动中的能量转化〔见第一册P173〕。
六、冲量与动量(物体的受力与动量的变化)
1.动量:p=mv{p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}
3.冲量:I=Ft{I:冲量(N?s),F:恒力(N),t:力的作用时间(s),方向由F决定}
4.动量定理: I=Δp或Ft=mvt–mvo {Δp:动量变化Δp=mvt–mvo,是矢量式}
5.动量守恒定律: p前总=p后总或p=p'′也可以是m1v1+m2v2=m1v1′+m2v2′
6.弹性碰撞:Δp=0;ΔEk=0{即系统的动量和动能均守恒}
7.非弹性碰撞Δp=0; 0<ΔEK<ΔEKm {ΔEK:损失的动能,EKm:损失的最大动能}
8.完全非弹性碰撞Δp=0;ΔEK=ΔEKm {碰后连在一起成一整体}
9.物体m1以v1初速度与静止的物体m2发生弹性正碰:v1′=(m1-m2)v1/(m1+m2) v2′=2m1v1/(m1+m2)
10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)
11.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失E损=mvo2/2-(M+m)vt2/2=fs相对{vt:共同速度,f:阻力,s相对子弹相对长木块的位移}
注:
(1)正碰又叫对心碰撞,速度方向在它们“中心”的连线上;
(2)以上表达式除动能外均为矢量运算,在一维情况下可取正方向化为代数运算;
(3)系统动量守恒的条件:合外力为零或系统不受外力,则系统动量守恒(碰撞问题、爆炸问题、反冲问题等);
(4)碰撞过程(时间极短,发生碰撞的物体构成的系统)视为动量守恒,原子核衰变时动量守恒;
(5)爆炸过程视为动量守恒,这时化学能转化为动能,动能增加;
(6)其它相关内容:反冲运动、火箭、航天技术的发展和宇宙航行〔见第一册P128〕。
七、功和能(功是能量转化的量度)
1.功:W=Fscosα(定义式){W:功(J),F:恒力(N),s:位移(m),α:F、s间的夹角}
2.重力做功:Wab=mghab {m:物体的质量,g=9.8m/s2≈10m/s2,hab:a与b高度差(hab=ha-hb)}
3.电场力做功:Wab=qUab {q:电量(C),Uab:a与b之间电势差(V)即Uab=φa-φb}4.电功:W=UIt(普适式) {U:电压(V),I:电流(A),t:通电时间(s)}
5.功率:P=W/t(定义式) {P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)}6.汽车牵引力的功率:P=Fv;P平=Fv平 {P:瞬时功率,P平:平均功率}
7.汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmax=P额/f)
8.电功率:P=UI(普适式) {U:电路电压(V),I:电路电流(A)}
9.焦耳定律:Q=I2Rt {Q:电热(J),I:电流强度(A),R:电阻值(Ω),t:通电时间(s)}
10.纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt
11.动能:Ek=mv2/2 {Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)}
12.重力势能:EP=mgh {EP :重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)}
13.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)(从零势能面起)}
14.动能定理(对物体做正功,物体的动能增加):W合=mvt2/2-mvo2/2或W合=ΔEK{W合:外力对物体做的总功,ΔEK:动能变化ΔEK=(mvt2/2-mvo2/2)}
15.机械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2
16.重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=-ΔEP
注:
(1)功率大小表示做功快慢,做功多少表示能量转化多少;
(2)O0≤α<90O 做正功;90O<α≤180O做负功;α=90o不做功(力的方向与位移(速度)方向垂直时该力不做功);
(3)重力(弹力、电场力、分子力)做正功,则重力(弹性、电、分子)势能减少
(4)重力做功和电场力做功均与路径无关(见2、3两式);
(5)机械能守恒成立条件:除重力(弹力)外其它力不做功,只是动能和势能之间的转化;
(6)能的其它单位换算:1kWh(度)=3.6×106J,1eV=1.60×10-19J;*
(7)弹簧弹性势能E=kx2/2,与劲度系数和形变量有关。
八、分子动理论、能量守恒定律
1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米 油膜法测分子直径d=V/s {V:单分子油膜的体积(m3),S:油膜表面积(m)2}
3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。
4.分子间的引力和斥力
(1)r<r0,f引<f斥,F分子力表现为斥力
(2)r=r0,f引=f斥,F分子力=0,E分子势能=Emin(最小值)
(3)r>r0,f引>f斥,F分子力表现为引力
(4)r>10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0
5.热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的), W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出〔见第二册P40〕}
6热力学第二定律克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性);开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性){涉及到第二类永动机不可造出〔见第二册P44〕}
7.热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)}
注:
(1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈;
(2)温度是分子平均动能的标志;
3)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快;
(4)分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小;
(5)气体膨胀,外界对气体做负功W<0;温度升高,内能增大ΔU>0;吸收热量,Q>0
(6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;
(7)r0为分子处于平衡状态时,分子间的距离;
(8)其它相关内容:能的转化和定恒定律〔见第二册P41〕/能源的开发与利用、环保〔见第二册P47〕/物体的内能、分子的动能、分子势能〔见第二册P47〕。
九、气体的性质
1.气体的状态参量:温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志,热力学温度与摄氏温度关系:T=t+273 {T:热力学温度(K),t:摄氏温度(℃)}体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)
2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大
3.理想气体的状态方程:p1V1/T1=p2V2/T2 {PV/T=恒量,T为热力学温度(K)}
注:
(1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关;
(2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度(K)。
十、电场
十一、恒定电流
十二、磁场
十三、电磁感应
十四、交变电流(正弦式交变电流)
十五、电磁振荡和电磁波
十六、光的反射和折射(几何光学)
十七、光的本性(光既有粒子性,又有波动性,称
十八、原子和原子核
(1)匀变速直线运动
1.平均速度V平=s/t(定义式)
2.有用推论Vt2-Vo2=2as
3.中间时刻速度Vt/2=V平=(Vt+Vo)/2
4.末速度Vt=Vo+at
5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2
6.位移s=V平t=Vot+at2/2=Vt/2t
7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}
8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}
9.主要物理量及单位:初速度(Vo):m/s;
加速度(a):m/s2;
末速度(Vt):m/s;
时间(t)秒(s);
位移(s):米(m);
路程:米;速度单位换算:1m/s=3.6km/h。
注:
(1)平均速度是矢量;
(2)物体速度大,加速度不一定大;
(3)a=(Vt-Vo)/t只是量度式,不是决定式;
(4)其它相关内容:质点、位移和路程、参考系、时间与时刻
〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。
2)自由落体运动
1.初速度Vo=0
2.末速度Vt=gt
3.下落高度h=gt2/2(从Vo位置向下计算)
4.推论Vt2=2gh
注:
(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;
(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。
(3)竖直上抛运动
1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)
3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起)
5.往返时间t=2Vo/g (从抛出落回原位置的时间)
注:
(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;
(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;
(3)上升与下落过程具有对称性,如在同点速度等值反向等。
二、质点的运动(2)----曲线运动、万有引力
1)平抛运动
1.水平方向速度:Vx=Vo
2.竖直方向速度:Vy=gt
3.水平方向位移:x=Vot
4.竖直方向位移:y=gt2/2
5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)
6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2
合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0
7.合位移:s=(x2+y2)1/2,
位移方向与水平夹角α:tgα=y/x=gt/2Vo
8.水平方向加速度:ax=0;竖直方向加速度:ay=g
注:
(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;
(2)运动时间由下落高度h(y)决定与水平抛出速度无关;
(3)θ与β的关系为tgβ=2tgα;
(4)在平抛运动中时间t是解题关键;
(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。
2)匀速圆周运动
1.线速度V=s/t=2πr/T
2.角速度ω=Φ/t=2π/T=2πf
3.向心加速度a=V2/r=ω2r=(2π/T)2r
4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合
5.周期与频率:T=1/f
6.角速度与线速度的关系:V=ωr
7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)
8.主要物理量及单位:
弧长(s):米(m);
角度(Φ):弧度(rad);
频率(f):赫(Hz);
周期(T):秒(s);
转速(n):r/s;
半径(r):米(m);
线速度(V):m/s;]
角速度(ω):rad/s;
向心加速度:m/s2。
注:
(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;
(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,
不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。
(3)万有引力
1.开普勒第三定律: T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}
2.万有引力定律: F=Gm1m2/r2 G=6.67×10-11N?m2/kg2,方向在它们的连线上)
3.天体上的重力和重力加速度:GMm/R2=mg; g=GM/R2{R:天体半径(m),M:天体质量(kg)}
4.卫星绕行速度、角速度、周期: V=(GM/r)1/2;ω=(GM/r3)1/2; T=2π(r3/GM)1/2 {M:中心天体质量}
5.第一(二、三)宇宙速度 V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s; V2=11.2km/s;
V3=16.7km/s
6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}
注:
(1)天体运动所需的向心力由万有引力提供,F向=F万;
(2)应用万有引力定律可估算天体的质量密度等;
(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;
(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);
(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。
三、力(常见的力、力的合成与分解)
1)常见的力
1.重力G=mg (方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)
2.胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}
3.滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}
4.静摩擦力0≤f静≤fm(与物体相对运动趋势方向相反,fm为最大静摩擦力)
5.万有引力F=Gm1m2/r2(G=6.67×10-11N?m2/kg2,方向在它们的连线上)
6.静电力F=kQ1Q2/r2 (k=9.0×109N?m2/C2,方向在它们的连线上)
7.电场力F=Eq(E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)
8.安培力F=BILsinθ(θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)
9.洛仑兹力f=qVBsinθ(θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)
注:
(1)劲度系数k由弹簧自身决定;
(2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定;
(3)fm略大于μFN,一般视为fm≈μFN
(4)其它相关内容:静摩擦力(大小、方向)〔见第一册P8〕;
(5)物理量符号及单位
B:磁感强度(T),
L:有效长度(m),
I:电流强度(A),
V:带电粒子速度(m/s),
q:带电粒子(带电体)
电量(C);
(6)安培力与洛仑兹力方向均用左手定则判定。
2)力的合成与分解
1.同一直线上力的合成同向: F=F1+F2,反向: F=F1-F2 (F1>F2)
2.互成角度力的合成: F=(F12+F22+2F1F2cosα)1/2(余弦定理)F1⊥F2时:F=(F12+F22)1/2
3.合力大小范围:|F1-F2|≤F≤|F1+F2|
4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ β为合力与x轴之间的夹角tgβ=Fy/Fx)
注:
(1)力(矢量)的合成与分解遵循平行四边形定则;
(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;
(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;
(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;
(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。
四、动力学(运动和力)
1.牛顿第一运动定律(惯性定律):
物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止
2.牛顿第二运动定律:
F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}
3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}
4.共点力的平衡F合=0,推广正交分解法、三力汇交原理}
5.超重FN>G,失重:FN<G {加速度方向向下,均失重,加速度方向向上,均超重}]
6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子〔见第一册P67〕
注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。
五、振动和波
(机械振动与机械振动的传播)
1.简谐振动F=-kx{F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}
2.单摆周期T=2π(l/g)1/2{l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}
3.受迫振动频率特点:f=f驱动力
4.发生共振条件: f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕
5.机械波、横波、纵波〔见第二册P2〕
6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}
7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)
8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大
9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)
10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕}
注:
(1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;
(2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处;
(3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式;
(4)干涉与衍射是波特有的;
(5)振动图象与波动图象;
(6)其它相关内容:超声波及其应用〔见第二册P22〕/振动中的能量转化〔见第一册P173〕。
六、冲量与动量(物体的受力与动量的变化)
1.动量:p=mv{p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}
3.冲量:I=Ft{I:冲量(N?s),F:恒力(N),t:力的作用时间(s),方向由F决定}
4.动量定理: I=Δp或Ft=mvt–mvo {Δp:动量变化Δp=mvt–mvo,是矢量式}
5.动量守恒定律: p前总=p后总或p=p'′也可以是m1v1+m2v2=m1v1′+m2v2′
6.弹性碰撞:Δp=0;ΔEk=0{即系统的动量和动能均守恒}
7.非弹性碰撞Δp=0; 0<ΔEK<ΔEKm {ΔEK:损失的动能,EKm:损失的最大动能}
8.完全非弹性碰撞Δp=0;ΔEK=ΔEKm {碰后连在一起成一整体}
9.物体m1以v1初速度与静止的物体m2发生弹性正碰:v1′=(m1-m2)v1/(m1+m2) v2′=2m1v1/(m1+m2)
10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)
11.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失E损=mvo2/2-(M+m)vt2/2=fs相对{vt:共同速度,f:阻力,s相对子弹相对长木块的位移}
注:
(1)正碰又叫对心碰撞,速度方向在它们“中心”的连线上;
(2)以上表达式除动能外均为矢量运算,在一维情况下可取正方向化为代数运算;
(3)系统动量守恒的条件:合外力为零或系统不受外力,则系统动量守恒(碰撞问题、爆炸问题、反冲问题等);
(4)碰撞过程(时间极短,发生碰撞的物体构成的系统)视为动量守恒,原子核衰变时动量守恒;
(5)爆炸过程视为动量守恒,这时化学能转化为动能,动能增加;
(6)其它相关内容:反冲运动、火箭、航天技术的发展和宇宙航行〔见第一册P128〕。
七、功和能(功是能量转化的量度)
1.功:W=Fscosα(定义式){W:功(J),F:恒力(N),s:位移(m),α:F、s间的夹角}
2.重力做功:Wab=mghab {m:物体的质量,g=9.8m/s2≈10m/s2,hab:a与b高度差(hab=ha-hb)}
3.电场力做功:Wab=qUab {q:电量(C),Uab:a与b之间电势差(V)即Uab=φa-φb}4.电功:W=UIt(普适式) {U:电压(V),I:电流(A),t:通电时间(s)}
5.功率:P=W/t(定义式) {P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)}6.汽车牵引力的功率:P=Fv;P平=Fv平 {P:瞬时功率,P平:平均功率}
7.汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmax=P额/f)
8.电功率:P=UI(普适式) {U:电路电压(V),I:电路电流(A)}
9.焦耳定律:Q=I2Rt {Q:电热(J),I:电流强度(A),R:电阻值(Ω),t:通电时间(s)}
10.纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt
11.动能:Ek=mv2/2 {Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)}
12.重力势能:EP=mgh {EP :重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)}
13.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)(从零势能面起)}
14.动能定理(对物体做正功,物体的动能增加):W合=mvt2/2-mvo2/2或W合=ΔEK{W合:外力对物体做的总功,ΔEK:动能变化ΔEK=(mvt2/2-mvo2/2)}
15.机械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2
16.重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=-ΔEP
注:
(1)功率大小表示做功快慢,做功多少表示能量转化多少;
(2)O0≤α<90O 做正功;90O<α≤180O做负功;α=90o不做功(力的方向与位移(速度)方向垂直时该力不做功);
(3)重力(弹力、电场力、分子力)做正功,则重力(弹性、电、分子)势能减少
(4)重力做功和电场力做功均与路径无关(见2、3两式);
(5)机械能守恒成立条件:除重力(弹力)外其它力不做功,只是动能和势能之间的转化;
(6)能的其它单位换算:1kWh(度)=3.6×106J,1eV=1.60×10-19J;*
(7)弹簧弹性势能E=kx2/2,与劲度系数和形变量有关。
八、分子动理论、能量守恒定律
1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米 油膜法测分子直径d=V/s {V:单分子油膜的体积(m3),S:油膜表面积(m)2}
3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。
4.分子间的引力和斥力
(1)r<r0,f引<f斥,F分子力表现为斥力
(2)r=r0,f引=f斥,F分子力=0,E分子势能=Emin(最小值)
(3)r>r0,f引>f斥,F分子力表现为引力
(4)r>10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0
5.热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的), W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出〔见第二册P40〕}
6热力学第二定律克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性);开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性){涉及到第二类永动机不可造出〔见第二册P44〕}
7.热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)}
注:
(1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈;
(2)温度是分子平均动能的标志;
3)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快;
(4)分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小;
(5)气体膨胀,外界对气体做负功W<0;温度升高,内能增大ΔU>0;吸收热量,Q>0
(6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;
(7)r0为分子处于平衡状态时,分子间的距离;
(8)其它相关内容:能的转化和定恒定律〔见第二册P41〕/能源的开发与利用、环保〔见第二册P47〕/物体的内能、分子的动能、分子势能〔见第二册P47〕。
九、气体的性质
1.气体的状态参量:温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志,热力学温度与摄氏温度关系:T=t+273 {T:热力学温度(K),t:摄氏温度(℃)}体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)
2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大
3.理想气体的状态方程:p1V1/T1=p2V2/T2 {PV/T=恒量,T为热力学温度(K)}
注:
(1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关;
(2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度(K)。
十、电场
十一、恒定电流
十二、磁场
十三、电磁感应
十四、交变电流(正弦式交变电流)
十五、电磁振荡和电磁波
十六、光的反射和折射(几何光学)
十七、光的本性(光既有粒子性,又有波动性,称
十八、原子和原子核
展开全部
一、质点的运动(1)------直线运动
1)匀变速直线运动
1.平均速度V平=S/t (定义式) 2.有用推论Vt^2 –Vo^2=2as
3.中间时刻速度 Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at
5.中间位置速度Vs/2=[(Vo^2 +Vt^2)/2]1/2 6.位移S= V平t=Vot + at^2/2=Vt/2t
7.加速度a=(Vt-Vo)/t 以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0
8.实验用推论ΔS=aT^2 ΔS为相邻连续相等时间(T)内位移之差
9.主要物理量及单位:初速(Vo):m/s
加速度(a):m/s^2 末速度(Vt):m/s
时间(t):秒(s) 位移(S):米(m) 路程:米 速度单位换算:1m/s=3.6Km/h
注:(1)平均速度是矢量。(2)物体速度大,加速度不一定大。(3)a=(Vt-Vo)/t只是量度式,不是决定式。(4)其它相关内容:质点/位移和路程/s--t图/v--t图/速度与速率/
2) 自由落体
1.初速度Vo=0
2.末速度Vt=gt
3.下落高度h=gt^2/2(从Vo位置向下计算) 4.推论Vt^2=2gh
注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速度直线运动规律。
(2)a=g=9.8 m/s^2≈10m/s^2 重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下。
3) 竖直上抛
1.位移S=Vot- gt^2/2 2.末速度Vt= Vo- gt (g=9.8≈10m/s2 )
3.有用推论Vt^2 –Vo^2=-2gS 4.上升最大高度Hm=Vo^2/2g (抛出点算起)
5.往返时间t=2Vo/g (从抛出落回原位置的时间)
注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。(2)分段处理:向上为匀减速运动,向下为自由落体运动,具有对称性。(3)上升与下落过程具有对称性,如在同点速度等值反向等。
二、质点的运动(2)----曲线运动 万有引力
1)平抛运动
1.水平方向速度Vx= Vo 2.竖直方向速度Vy=gt
3.水平方向位移Sx= Vot 4.竖直方向位移(Sy)=gt^2/2
5.运动时间t=(2Sy/g)1/2 (通常又表示为(2h/g)1/2)
6.合速度Vt=(Vx^2+Vy^2)1/2=[Vo^2+(gt)^2]1/2
合速度方向与水平夹角β: tgβ=Vy/Vx=gt/Vo
7.合位移S=(Sx^2+ Sy^2)1/2 ,
位移方向与水平夹角α: tgα=Sy/Sx=gt/2Vo
注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运动与竖直方向的自由落体运动的合成。(2)运动时间由下落高度h(Sy)决定与水平抛出速度无关。(3)θ与β的关系为tgβ=2tgα 。(4)在平抛运动中时间t是解题关键。(5)曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时物体做曲线运动。
2)匀速圆周运动
1.线速度V=s/t=2πR/T 2.角速度ω=Φ/t=2π/T=2πf
3.向心加速度a=V^2/R=ω^2R=(2π/T)^2R 4.向心力F心=Mv^2/R=mω^2*R=m(2π/T)^2*R
5.周期与频率T=1/f 6.角速度与线速度的关系V=ωR
7.角速度与转速的关系ω=2πn (此处频率与转速意义相同)
8.主要物理量及单位: 弧长(S):米(m) 角度(Φ):弧度(rad) 频率(f):赫(Hz)
周期(T):秒(s) 转速(n):r/s 半径(R):米(m) 线速度(V):m/s
角速度(ω):rad/s 向心加速度:m/s2
注:(1)向心力可以由具体某个力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直。(2)做匀速度圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,但动量不断改变。
3)万有引力
1.开普勒第三定律T2/R3=K(=4π^2/GM) R:轨道半径 T :周期 K:常量(与行星质量无关)
2.万有引力定律F=Gm1m2/r^2 G=6.67×10^-11N·m^2/kg^2方向在它们的连线上
3.天体上的重力和重力加速度GMm/R^2=mg g=GM/R^2 R:天体半径(m)
4.卫星绕行速度、角速度、周期 V=(GM/R)1/2 ω=(GM/R^3)1/2 T=2π(R^3/GM)1/2
5.第一(二、三)宇宙速度V1=(g地r地)1/2=7.9Km/s V2=11.2Km/s V3=16.7Km/s
6.地球同步卫星GMm/(R+h)^2=m*4π^2(R+h)/T^2 h≈3.6 km h:距地球表面的高度
注:(1)天体运动所需的向心力由万有引力提供,F心=F万。(2)应用万有引力定律可估算天体的质量密度等。(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同。(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小。(5)地球卫星的最大环绕速度和最小发射速度均为7.9Km/S。
机械能
1.功
(1)做功的两个条件: 作用在物体上的力.
物体在里的方向上通过的距离.
(2)功的大小: W=Fscosa 功是标量 功的单位:焦耳(J)
1J=1N*m
当 0<= a <派/2 w>0 F做正功 F是动力
当 a=派/2 w=0 (cos派/2=0) F不作功
当 派/2<= a <派 W<0 F做负功 F是阻力
(3)总功的求法:
W总=W1+W2+W3……Wn
W总=F合Scosa
2.功率
(1) 定义:功跟完成这些功所用时间的比值.
P=W/t 功率是标量 功率单位:瓦特(w)
此公式求的是平均功率
1w=1J/s 1000w=1kw
(2) 功率的另一个表达式: P=Fvcosa
当F与v方向相同时, P=Fv. (此时cos0度=1)
此公式即可求平均功率,也可求瞬时功率
1)平均功率: 当v为平均速度时
2)瞬时功率: 当v为t时刻的瞬时速度
(3) 额定功率: 指机器正常工作时最大输出功率
实际功率: 指机器在实际工作中的输出功率
正常工作时: 实际功率≤额定功率
(4) 机车运动问题(前提:阻力f恒定)
P=Fv F=ma+f (由牛顿第二定律得)
汽车启动有两种模式
1) 汽车以恒定功率启动 (a在减小,一直到0)
P恒定 v在增加 F在减小 尤F=ma+f
当F减小=f时 v此时有最大值
2) 汽车以恒定加速度前进(a开始恒定,在逐渐减小到0)
a恒定 F不变(F=ma+f) V在增加 P实逐渐增加最大
此时的P为额定功率 即P一定
P恒定 v在增加 F在减小 尤F=ma+f
当F减小=f时 v此时有最大值
3.功和能
(1) 功和能的关系: 做功的过程就是能量转化的过程
功是能量转化的量度
(2) 功和能的区别: 能是物体运动状态决定的物理量,即过程量
功是物体状态变化过程有关的物理量,即状态量
这是功和能的根本区别.
4.动能.动能定理
(1) 动能定义:物体由于运动而具有的能量. 用Ek表示
表达式 Ek=1/2mv^2 能是标量 也是过程量
单位:焦耳(J) 1kg*m^2/s^2 = 1J
(2) 动能定理内容:合外力做的功等于物体动能的变化
表达式 W合=ΔEk=1/2mv^2-1/2mv0^2
适用范围:恒力做功,变力做功,分段做功,全程做功
5.重力势能
(1) 定义:物体由于被举高而具有的能量. 用Ep表示
表达式 Ep=mgh 是标量 单位:焦耳(J)
(2) 重力做功和重力势能的关系
W重=-ΔEp
重力势能的变化由重力做功来量度
(3) 重力做功的特点:只和初末位置有关,跟物体运动路径无关
重力势能是相对性的,和参考平面有关,一般以地面为参考平面
重力势能的变化是绝对的,和参考平面无关
(4) 弹性势能:物体由于形变而具有的能量
弹性势能存在于发生弹性形变的物体中,跟形变的大小有关
弹性势能的变化由弹力做功来量度
6.机械能守恒定律
(1) 机械能:动能,重力势能,弹性势能的总称
总机械能:E=Ek+Ep 是标量 也具有相对性
机械能的变化,等于非重力做功 (比如阻力做的功)
ΔE=W非重
机械能之间可以相互转化
(2) 机械能守恒定律: 只有重力做功的情况下,物体的动能和重力势能
发生相互转化,但机械能保持不变
表达式: Ek1+Ep1=Ek2+Ep2 成立条件:只有重力做功
回答者: 煮酒弹剑爱老庄 - 高级经理 六级 1-28 20:51
高中物理公式,规律汇编表
一,力学
胡克定律: F = kx (x为伸长量或压缩量;k为劲度系数,只与弹簧的原长,粗细和材料有关)
重力: G = mg (g随离地面高度,纬度,地质结构而变化;重力约等于地面上物体受到的地球引力)
3 ,求F,的合力:利用平行四边形定则.
注意:(1) 力的合成和分解都均遵从平行四边行法则.
(2) 两个力的合力范围: F1-F2 F F1 + F2
(3) 合力大小可以大于分力,也可以小于分力,也可以等于分力.
4,两个平衡条件:
共点力作用下物体的平衡条件:静止或匀速直线运动的物体,所受合外力为零.
F合=0 或 : Fx合=0 Fy合=0
推论:[1]非平行的三个力作用于物体而平衡,则这三个力一定共点.
[2]三个共点力作用于物体而平衡,其中任意两个力的合力与第三个力一定等值反向
(2 )有固定转动轴物体的平衡条件:力矩代数和为零.(只要求了解)
力矩:M=FL (L为力臂,是转动轴到力的作用线的垂直距离)
5,摩擦力的公式:
(1) 滑动摩擦力: f= FN
说明 : ① FN为接触面间的弹力,可以大于G;也可以等于G;也可以小于G
② 为滑动摩擦因数,只与接触面材料和粗糙程度有关,与接触面积大小,接触面相对运动快慢以及正压力N无关.
(2) 静摩擦力:其大小与其他力有关, 由物体的平衡条件或牛顿第二定律求解,不与正压力成正比.
大小范围: O f静 fm (fm为最大静摩擦力,与正压力有关)
说明:
a ,摩擦力可以与运动方向相同,也可以与运动方向相反.
b,摩擦力可以做正功,也可以做负功,还可以不做功.
c,摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反.
d,静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用.
6, 浮力: F= gV (注意单位)
7, 万有引力: F=G
适用条件:两质点间的引力(或可以看作质点,如两个均匀球体).
G为万有引力恒量,由卡文迪许用扭秤装置首先测量出.
在天体上的应用:(M--天体质量 ,m—卫星质量, R--天体半径 ,g--天体表面重力加速度,h—卫星到天体表面的高度)
a ,万有引力=向心力
G
b,在地球表面附近,重力=万有引力
mg = G g = G
第一宇宙速度
mg = m V=
8, 库仑力:F=K (适用条件:真空中,两点电荷之间的作用力)
电场力:F=Eq (F 与电场强度的方向可以相同,也可以相反)
10,磁场力:
洛仑兹力:磁场对运动电荷的作用力.
公式:f=qVB (BV) 方向--左手定则
安培力 : 磁场对电流的作用力.
公式:F= BIL (BI) 方向--左手定则
11,牛顿第二定律: F合 = ma 或者 Fx = m ax Fy = m ay
适用范围:宏观,低速物体
理解:(1)矢量性 (2)瞬时性 (3)独立性
(4) 同体性 (5)同系性 (6)同单位制
12,匀变速直线运动:
基本规律: Vt = V0 + a t S = vo t +a t2
几个重要推论:
(1) Vt2 - V02 = 2as (匀加速直线运动:a为正值 匀减速直线运动:a为正值)
(2) A B段中间时刻的瞬时速度:
Vt/ 2 == (3) AB段位移中点的即时速度:
Vs/2 =
匀速:Vt/2 =Vs/2 ; 匀加速或匀减速直线运动:Vt/2 初速为零的匀加速直线运动,在1s ,2s,3s……ns内的位移之比为12:22:32……n2; 在第1s 内,第 2s内,第3s内……第ns内的位移之比为1:3:5…… (2n-1); 在第1米内,第2米内,第3米内……第n米内的时间之比为1:: ……(
初速无论是否为零,匀变速直线运动的质点,在连续相邻的相等的时间间隔内的位移之差为一常数:s = aT2 (a--匀变速直线运动的加速度 T--每个时间间隔的时间)
竖直上抛运动: 上升过程是匀减速直线运动,下落过程是匀加速直线运动.全过程是初速度为VO,加速度为g的匀减速直线运动.
上升最大高度: H =
(2) 上升的时间: t=
(3) 上升,下落经过同一位置时的加速度相同,而速度等值反向
(4) 上升,下落经过同一段位移的时间相等. 从抛出到落回原位置的时间:t =
(5)适用全过程的公式: S = Vo t --g t2 Vt = Vo-g t
Vt2 -Vo2 = - 2 gS ( S,Vt的正,负号的理解)
14,匀速圆周运动公式
线速度: V= R =2f R=
角速度:=
向心加速度:a =2 f2 R
向心力: F= ma = m2 R= mm4n2 R
注意:(1)匀速圆周运动的物体的向心力就是物体所受的合外力,总是指向圆心.
(2)卫星绕地球,行星绕太阳作匀速圆周运动的向心力由万有引力提供.
氢原子核外电子绕原子核作匀速圆周运动的向心力由原子核对核外电子的库仑力提供.
15,平抛运动公式:匀速直线运动和初速度为零的匀加速直线运动的合运动
水平分运动: 水平位移: x= vo t 水平分速度:vx = vo
竖直分运动: 竖直位移: y =g t2 竖直分速度:vy= g t
tg = Vy = Votg Vo =Vyctg
V = Vo = Vcos Vy = Vsin
在Vo,Vy,V,X,y,t,七个物理量中,如果 已知其中任意两个,可根据以上公式求出其它五个物理量.
16, 动量和冲量: 动量: P = mV 冲量:I = F t
(要注意矢量性)
17 ,动量定理: 物体所受合外力的冲量等于它的动量的变化.
公式: F合t = mv' - mv (解题时受力分析和正方向的规定是关键)
18,动量守恒定律:相互作用的物体系统,如果不受外力,或它们所受的外力之和为零,它们的总动量保持不变. (研究对象:相互作用的两个物体或多个物体)
公式:m1v1 + m2v2 = m1 v1'+ m2v2'或p1 =- p2 或p1 +p2=O
适用条件:
(1)系统不受外力作用. (2)系统受外力作用,但合外力为零.
(3)系统受外力作用,合外力也不为零,但合外力远小于物体间的相互作用力.
(4)系统在某一个方向的合外力为零,在这个方向的动量守恒.
19, 功 : W = Fs cos (适用于恒力的功的计算)
理解正功,零功,负功
(2) 功是能量转化的量度
重力的功------量度------重力势能的变化
电场力的功-----量度------电势能的变化
分子力的功-----量度------分子势能的变化
合外力的功------量度-------动能的变化
20, 动能和势能: 动能: Ek =
重力势能:Ep = mgh (与零势能面的选择有关)
21,动能定理:外力所做的总功等于物体动能的变化(增量).
公式: W合= Ek = Ek2 - Ek1 = 22,机械能守恒定律:机械能 = 动能+重力势能+弹性势能
条件:系统只有内部的重力或弹力做功.
公式: mgh1 + 或者 Ep减 = Ek增
23,能量守恒(做功与能量转化的关系):有相互摩擦力的系统,减少的机械能等于摩擦力所做的功.
E = Q = f S相
24,功率: P = (在t时间内力对物体做功的平均功率)
P = FV (F为牵引力,不是合外力;V为即时速度时,P为即时功率;V为平均速度时,P为平均功率; P一定时,F与V成正比)
25, 简谐振动: 回复力: F = -KX 加速度:a = -
单摆周期公式: T= 2 (与摆球质量,振幅无关)
(了解)弹簧振子周期公式:T= 2 (与振子质量,弹簧劲度系数有关,与振幅无关)
26, 波长,波速,频率的关系: V == f (适用于一切波)
二,热学
1,热力学第一定律:U = Q + W
符号法则:外界对物体做功,W为"+".物体对外做功,W为"-";
物体从外界吸热,Q为"+";物体对外界放热,Q为"-".
物体内能增量U是取"+";物体内能减少,U取"-".
2 ,热力学第二定律:
表述一:不可能使热量由低温物体传递到高温物体,而不引起其他变化.
表述二:不可能从单一的热源吸收热量并把它全部用来对外做功,而不引起其他变化.
表述三:第二类永动机是不可能制成的.
3,理想气体状态方程:
(1)适用条件:一定质量的理想气体,三个状态参量同时发生变化.
(2) 公式: 恒量
4,热力学温度:T = t + 273 单位:开(K)
(绝对零度是低温的极限,不可能达到)
三,电磁学
(一)直流电路
1,电流的定义: I = (微观表示: I=nesv,n为单位体积内的电荷数)
2,电阻定律: R=ρ (电阻率ρ只与导体材料性质和温度有关,与导体横截面积和长度无关)
3,电阻串联,并联:
串联:R=R1+R2+R3 +……+Rn
并联: 两个电阻并联: R=
4,欧姆定律:(1)部分电路欧姆定律: U=IR
(2)闭合电路欧姆定律:I =
路端电压: U = -I r= IR
电源输出功率: = Iε-Ir =
电源热功率:
电源效率: = =
(3)电功和电功率:
电功:W=IUt 电热:Q= 电功率 :P=IU
对于纯电阻电路: W=IUt= P=IU =
对于非纯电阻电路: W=Iut P=IU
(4)电池组的串联:每节电池电动势为`内阻为,n节电池串联时:
电动势:ε=n 内阻:r=n
(二)电场
1,电场的力的性质:
电场强度:(定义式) E = (q 为试探电荷,场强的大小与q无关)
点电荷电场的场强: E = (注意场强的矢量性)
2,电场的能的性质:
电势差: U = (或 W = U q )
UAB = φA - φB
电场力做功与电势能变化的关系:U = - W
3,匀强电场中场强跟电势差的关系: E = (d 为沿场强方向的距离)
4,带电粒子在电场中的运动:
铀? Uq =mv2
②偏转:运动分解: x= vo t ; vx = vo ; y =a t2 ; vy= a t
a =
(三)磁场
几种典型的磁场:通电直导线,通电螺线管,环形电流,地磁场的磁场分布.
磁场对通电导线的作用(安培力):F = BIL (要求 B⊥I, 力的方向由左手定则判定;若B‖I,则力的大小为零)
磁场对运动电荷的作用(洛仑兹力): F = qvB (要求v⊥B, 力的方向也是由左手定则判定,但四指必须指向正电荷的运动方向;若B‖v,则力的大小为零)
带电粒子在磁场中运动:当带电粒子垂直射入匀强磁场时,洛仑兹力提供向心力,带电粒子做匀速圆周运动.即: qvB =
可得: r = , T = (确定圆心和半径是关键)
(四)电磁感应
1,感应电流的方向判定:①导体切割磁感应线:右手定则;②磁通量发生变化:楞次定律.
2,感应电动势的大小:① E = BLV (要求L垂直于B,V,否则要分解到垂直的方向上 ) ② E = (①式常用于计算瞬时值,②式常用于计算平均值)
(五)交变电流
1,交变电流的产生:线圈在磁场中匀速转动,若线圈从中性面(线圈平面与磁场方向垂直)开始转动,其感应电动势瞬时值为:e = Em sinωt ,其中 感应电动势最大值:Em = nBSω .
2 ,正弦式交流的有效值:E = ;U = ; I =
(有效值用于计算电流做功,导体产生的热量等;而计算通过导体的电荷量要用交流的平均值)
3 ,电感和电容对交流的影响:
电感:通直流,阻交流;通低频,阻高频
电容:通交流,隔直流;通高频,阻低频
电阻:交,直流都能通过,且都有阻碍
4,变压器原理(理想变压器):
①电压: ② 功率:P1 = P2
③ 电流:如果只有一个副线圈 : ;
若有多个副线圈:n1I1= n2I2 + n3I3
电磁振荡(LC回路)的周期:T = 2π
四,光学
1,光的折射定律:n =
介质的折射率:n =
2,全反射的条件:①光由光密介质射入光疏介质;②入射角大于或等于临界角. 临界角C: sin C =
3,双缝干涉的规律:
①路程差ΔS = (n=0,1,2,3--) 明条纹
(2n+1) (n=0,1,2,3--) 暗条纹
相邻的两条明条纹(或暗条纹)间的距离:ΔX =
4,光子的能量: E = hυ = h ( 其中h 为普朗克常量,等于6.63×10-34Js, υ为光的频率) (光子的能量也可写成: E = m c2 )
(爱因斯坦)光电效应方程: Ek = hυ - W (其中Ek为光电子的最大初动能,W为金属的逸出功,与金属的种类有关)
5,物质波的波长: = (其中h 为普朗克常量,p 为物体的动量)
五,原子和原子核
氢原子的能级结构.
原子在两个能级间跃迁时发射(或吸收光子):
hυ = E m - E n
核能:核反应过程中放出的能量.
质能方程: E = m C2 核反应释放核能:ΔE = Δm C2
复习建议:
1,高中物理的主干知识为力学和电磁学,两部分内容各占高考的38℅,这些内容主要出现在计算题和实验题中.
力学的重点是:①力与物体运动的关系;②万有引力定律在天文学上的应用;③动量守恒和能量守恒定律的应用;④振动和波等等.⑤⑥
解决力学问题首要任务是明确研究的对象和过程,分析物理情景,建立正确的模型.解题常有三种途径:①如果是匀变速过程,通常可以利用运动学公式和牛顿定律来求解;②如果涉及力与时间问题,通常可以用动量的观点来求解,代表规律是动量定理和动量守恒定律;③如果涉及力与位移问题,通常可以用能量的观点来求解,代表规律是动能定理和机械能守恒定律(或能量守恒定律).后两种方法由于只要考虑初,末状态,尤其适用过程复杂的变加速运动,但要注意两大守恒定律都是有条件的.
电磁学的重点是:①电场的性质;②电路的分析,设计与计算;③带电粒子在电场,磁场中的运动;④电磁感应现象中的力的问题,能量问题等等.
2,热学,光学,原子和原子核,这三部分内容在高考中各占约8℅,由于高考要求知识覆盖面广,而这些内容的分数相对较少,所以多以选择,实验的形式出现.但绝对不能认为这部分内容分数少而不重视,正因为内容少,规律少,这部分的得分率应该是很高的.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角
弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r
乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理
判别式
b2-4ac=0 注:方程有两个相等的实根
b2-4ac>0 注:方程有两个不等的实根
b2-4ac<0 注:方程没有实根,有共轭复数根
降幂公式
(sin^2)x=1-cos2x/2
(cos^2)x=i=cos2x/2
万能公式
令tan(a/2)=t
sina=2t/(1+t^2)
cosa=(1-t^2)/(1+t^2)
tana=2t/(1-t^2)
1)匀变速直线运动
1.平均速度V平=S/t (定义式) 2.有用推论Vt^2 –Vo^2=2as
3.中间时刻速度 Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at
5.中间位置速度Vs/2=[(Vo^2 +Vt^2)/2]1/2 6.位移S= V平t=Vot + at^2/2=Vt/2t
7.加速度a=(Vt-Vo)/t 以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0
8.实验用推论ΔS=aT^2 ΔS为相邻连续相等时间(T)内位移之差
9.主要物理量及单位:初速(Vo):m/s
加速度(a):m/s^2 末速度(Vt):m/s
时间(t):秒(s) 位移(S):米(m) 路程:米 速度单位换算:1m/s=3.6Km/h
注:(1)平均速度是矢量。(2)物体速度大,加速度不一定大。(3)a=(Vt-Vo)/t只是量度式,不是决定式。(4)其它相关内容:质点/位移和路程/s--t图/v--t图/速度与速率/
2) 自由落体
1.初速度Vo=0
2.末速度Vt=gt
3.下落高度h=gt^2/2(从Vo位置向下计算) 4.推论Vt^2=2gh
注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速度直线运动规律。
(2)a=g=9.8 m/s^2≈10m/s^2 重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下。
3) 竖直上抛
1.位移S=Vot- gt^2/2 2.末速度Vt= Vo- gt (g=9.8≈10m/s2 )
3.有用推论Vt^2 –Vo^2=-2gS 4.上升最大高度Hm=Vo^2/2g (抛出点算起)
5.往返时间t=2Vo/g (从抛出落回原位置的时间)
注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。(2)分段处理:向上为匀减速运动,向下为自由落体运动,具有对称性。(3)上升与下落过程具有对称性,如在同点速度等值反向等。
二、质点的运动(2)----曲线运动 万有引力
1)平抛运动
1.水平方向速度Vx= Vo 2.竖直方向速度Vy=gt
3.水平方向位移Sx= Vot 4.竖直方向位移(Sy)=gt^2/2
5.运动时间t=(2Sy/g)1/2 (通常又表示为(2h/g)1/2)
6.合速度Vt=(Vx^2+Vy^2)1/2=[Vo^2+(gt)^2]1/2
合速度方向与水平夹角β: tgβ=Vy/Vx=gt/Vo
7.合位移S=(Sx^2+ Sy^2)1/2 ,
位移方向与水平夹角α: tgα=Sy/Sx=gt/2Vo
注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运动与竖直方向的自由落体运动的合成。(2)运动时间由下落高度h(Sy)决定与水平抛出速度无关。(3)θ与β的关系为tgβ=2tgα 。(4)在平抛运动中时间t是解题关键。(5)曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时物体做曲线运动。
2)匀速圆周运动
1.线速度V=s/t=2πR/T 2.角速度ω=Φ/t=2π/T=2πf
3.向心加速度a=V^2/R=ω^2R=(2π/T)^2R 4.向心力F心=Mv^2/R=mω^2*R=m(2π/T)^2*R
5.周期与频率T=1/f 6.角速度与线速度的关系V=ωR
7.角速度与转速的关系ω=2πn (此处频率与转速意义相同)
8.主要物理量及单位: 弧长(S):米(m) 角度(Φ):弧度(rad) 频率(f):赫(Hz)
周期(T):秒(s) 转速(n):r/s 半径(R):米(m) 线速度(V):m/s
角速度(ω):rad/s 向心加速度:m/s2
注:(1)向心力可以由具体某个力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直。(2)做匀速度圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,但动量不断改变。
3)万有引力
1.开普勒第三定律T2/R3=K(=4π^2/GM) R:轨道半径 T :周期 K:常量(与行星质量无关)
2.万有引力定律F=Gm1m2/r^2 G=6.67×10^-11N·m^2/kg^2方向在它们的连线上
3.天体上的重力和重力加速度GMm/R^2=mg g=GM/R^2 R:天体半径(m)
4.卫星绕行速度、角速度、周期 V=(GM/R)1/2 ω=(GM/R^3)1/2 T=2π(R^3/GM)1/2
5.第一(二、三)宇宙速度V1=(g地r地)1/2=7.9Km/s V2=11.2Km/s V3=16.7Km/s
6.地球同步卫星GMm/(R+h)^2=m*4π^2(R+h)/T^2 h≈3.6 km h:距地球表面的高度
注:(1)天体运动所需的向心力由万有引力提供,F心=F万。(2)应用万有引力定律可估算天体的质量密度等。(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同。(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小。(5)地球卫星的最大环绕速度和最小发射速度均为7.9Km/S。
机械能
1.功
(1)做功的两个条件: 作用在物体上的力.
物体在里的方向上通过的距离.
(2)功的大小: W=Fscosa 功是标量 功的单位:焦耳(J)
1J=1N*m
当 0<= a <派/2 w>0 F做正功 F是动力
当 a=派/2 w=0 (cos派/2=0) F不作功
当 派/2<= a <派 W<0 F做负功 F是阻力
(3)总功的求法:
W总=W1+W2+W3……Wn
W总=F合Scosa
2.功率
(1) 定义:功跟完成这些功所用时间的比值.
P=W/t 功率是标量 功率单位:瓦特(w)
此公式求的是平均功率
1w=1J/s 1000w=1kw
(2) 功率的另一个表达式: P=Fvcosa
当F与v方向相同时, P=Fv. (此时cos0度=1)
此公式即可求平均功率,也可求瞬时功率
1)平均功率: 当v为平均速度时
2)瞬时功率: 当v为t时刻的瞬时速度
(3) 额定功率: 指机器正常工作时最大输出功率
实际功率: 指机器在实际工作中的输出功率
正常工作时: 实际功率≤额定功率
(4) 机车运动问题(前提:阻力f恒定)
P=Fv F=ma+f (由牛顿第二定律得)
汽车启动有两种模式
1) 汽车以恒定功率启动 (a在减小,一直到0)
P恒定 v在增加 F在减小 尤F=ma+f
当F减小=f时 v此时有最大值
2) 汽车以恒定加速度前进(a开始恒定,在逐渐减小到0)
a恒定 F不变(F=ma+f) V在增加 P实逐渐增加最大
此时的P为额定功率 即P一定
P恒定 v在增加 F在减小 尤F=ma+f
当F减小=f时 v此时有最大值
3.功和能
(1) 功和能的关系: 做功的过程就是能量转化的过程
功是能量转化的量度
(2) 功和能的区别: 能是物体运动状态决定的物理量,即过程量
功是物体状态变化过程有关的物理量,即状态量
这是功和能的根本区别.
4.动能.动能定理
(1) 动能定义:物体由于运动而具有的能量. 用Ek表示
表达式 Ek=1/2mv^2 能是标量 也是过程量
单位:焦耳(J) 1kg*m^2/s^2 = 1J
(2) 动能定理内容:合外力做的功等于物体动能的变化
表达式 W合=ΔEk=1/2mv^2-1/2mv0^2
适用范围:恒力做功,变力做功,分段做功,全程做功
5.重力势能
(1) 定义:物体由于被举高而具有的能量. 用Ep表示
表达式 Ep=mgh 是标量 单位:焦耳(J)
(2) 重力做功和重力势能的关系
W重=-ΔEp
重力势能的变化由重力做功来量度
(3) 重力做功的特点:只和初末位置有关,跟物体运动路径无关
重力势能是相对性的,和参考平面有关,一般以地面为参考平面
重力势能的变化是绝对的,和参考平面无关
(4) 弹性势能:物体由于形变而具有的能量
弹性势能存在于发生弹性形变的物体中,跟形变的大小有关
弹性势能的变化由弹力做功来量度
6.机械能守恒定律
(1) 机械能:动能,重力势能,弹性势能的总称
总机械能:E=Ek+Ep 是标量 也具有相对性
机械能的变化,等于非重力做功 (比如阻力做的功)
ΔE=W非重
机械能之间可以相互转化
(2) 机械能守恒定律: 只有重力做功的情况下,物体的动能和重力势能
发生相互转化,但机械能保持不变
表达式: Ek1+Ep1=Ek2+Ep2 成立条件:只有重力做功
回答者: 煮酒弹剑爱老庄 - 高级经理 六级 1-28 20:51
高中物理公式,规律汇编表
一,力学
胡克定律: F = kx (x为伸长量或压缩量;k为劲度系数,只与弹簧的原长,粗细和材料有关)
重力: G = mg (g随离地面高度,纬度,地质结构而变化;重力约等于地面上物体受到的地球引力)
3 ,求F,的合力:利用平行四边形定则.
注意:(1) 力的合成和分解都均遵从平行四边行法则.
(2) 两个力的合力范围: F1-F2 F F1 + F2
(3) 合力大小可以大于分力,也可以小于分力,也可以等于分力.
4,两个平衡条件:
共点力作用下物体的平衡条件:静止或匀速直线运动的物体,所受合外力为零.
F合=0 或 : Fx合=0 Fy合=0
推论:[1]非平行的三个力作用于物体而平衡,则这三个力一定共点.
[2]三个共点力作用于物体而平衡,其中任意两个力的合力与第三个力一定等值反向
(2 )有固定转动轴物体的平衡条件:力矩代数和为零.(只要求了解)
力矩:M=FL (L为力臂,是转动轴到力的作用线的垂直距离)
5,摩擦力的公式:
(1) 滑动摩擦力: f= FN
说明 : ① FN为接触面间的弹力,可以大于G;也可以等于G;也可以小于G
② 为滑动摩擦因数,只与接触面材料和粗糙程度有关,与接触面积大小,接触面相对运动快慢以及正压力N无关.
(2) 静摩擦力:其大小与其他力有关, 由物体的平衡条件或牛顿第二定律求解,不与正压力成正比.
大小范围: O f静 fm (fm为最大静摩擦力,与正压力有关)
说明:
a ,摩擦力可以与运动方向相同,也可以与运动方向相反.
b,摩擦力可以做正功,也可以做负功,还可以不做功.
c,摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反.
d,静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用.
6, 浮力: F= gV (注意单位)
7, 万有引力: F=G
适用条件:两质点间的引力(或可以看作质点,如两个均匀球体).
G为万有引力恒量,由卡文迪许用扭秤装置首先测量出.
在天体上的应用:(M--天体质量 ,m—卫星质量, R--天体半径 ,g--天体表面重力加速度,h—卫星到天体表面的高度)
a ,万有引力=向心力
G
b,在地球表面附近,重力=万有引力
mg = G g = G
第一宇宙速度
mg = m V=
8, 库仑力:F=K (适用条件:真空中,两点电荷之间的作用力)
电场力:F=Eq (F 与电场强度的方向可以相同,也可以相反)
10,磁场力:
洛仑兹力:磁场对运动电荷的作用力.
公式:f=qVB (BV) 方向--左手定则
安培力 : 磁场对电流的作用力.
公式:F= BIL (BI) 方向--左手定则
11,牛顿第二定律: F合 = ma 或者 Fx = m ax Fy = m ay
适用范围:宏观,低速物体
理解:(1)矢量性 (2)瞬时性 (3)独立性
(4) 同体性 (5)同系性 (6)同单位制
12,匀变速直线运动:
基本规律: Vt = V0 + a t S = vo t +a t2
几个重要推论:
(1) Vt2 - V02 = 2as (匀加速直线运动:a为正值 匀减速直线运动:a为正值)
(2) A B段中间时刻的瞬时速度:
Vt/ 2 == (3) AB段位移中点的即时速度:
Vs/2 =
匀速:Vt/2 =Vs/2 ; 匀加速或匀减速直线运动:Vt/2 初速为零的匀加速直线运动,在1s ,2s,3s……ns内的位移之比为12:22:32……n2; 在第1s 内,第 2s内,第3s内……第ns内的位移之比为1:3:5…… (2n-1); 在第1米内,第2米内,第3米内……第n米内的时间之比为1:: ……(
初速无论是否为零,匀变速直线运动的质点,在连续相邻的相等的时间间隔内的位移之差为一常数:s = aT2 (a--匀变速直线运动的加速度 T--每个时间间隔的时间)
竖直上抛运动: 上升过程是匀减速直线运动,下落过程是匀加速直线运动.全过程是初速度为VO,加速度为g的匀减速直线运动.
上升最大高度: H =
(2) 上升的时间: t=
(3) 上升,下落经过同一位置时的加速度相同,而速度等值反向
(4) 上升,下落经过同一段位移的时间相等. 从抛出到落回原位置的时间:t =
(5)适用全过程的公式: S = Vo t --g t2 Vt = Vo-g t
Vt2 -Vo2 = - 2 gS ( S,Vt的正,负号的理解)
14,匀速圆周运动公式
线速度: V= R =2f R=
角速度:=
向心加速度:a =2 f2 R
向心力: F= ma = m2 R= mm4n2 R
注意:(1)匀速圆周运动的物体的向心力就是物体所受的合外力,总是指向圆心.
(2)卫星绕地球,行星绕太阳作匀速圆周运动的向心力由万有引力提供.
氢原子核外电子绕原子核作匀速圆周运动的向心力由原子核对核外电子的库仑力提供.
15,平抛运动公式:匀速直线运动和初速度为零的匀加速直线运动的合运动
水平分运动: 水平位移: x= vo t 水平分速度:vx = vo
竖直分运动: 竖直位移: y =g t2 竖直分速度:vy= g t
tg = Vy = Votg Vo =Vyctg
V = Vo = Vcos Vy = Vsin
在Vo,Vy,V,X,y,t,七个物理量中,如果 已知其中任意两个,可根据以上公式求出其它五个物理量.
16, 动量和冲量: 动量: P = mV 冲量:I = F t
(要注意矢量性)
17 ,动量定理: 物体所受合外力的冲量等于它的动量的变化.
公式: F合t = mv' - mv (解题时受力分析和正方向的规定是关键)
18,动量守恒定律:相互作用的物体系统,如果不受外力,或它们所受的外力之和为零,它们的总动量保持不变. (研究对象:相互作用的两个物体或多个物体)
公式:m1v1 + m2v2 = m1 v1'+ m2v2'或p1 =- p2 或p1 +p2=O
适用条件:
(1)系统不受外力作用. (2)系统受外力作用,但合外力为零.
(3)系统受外力作用,合外力也不为零,但合外力远小于物体间的相互作用力.
(4)系统在某一个方向的合外力为零,在这个方向的动量守恒.
19, 功 : W = Fs cos (适用于恒力的功的计算)
理解正功,零功,负功
(2) 功是能量转化的量度
重力的功------量度------重力势能的变化
电场力的功-----量度------电势能的变化
分子力的功-----量度------分子势能的变化
合外力的功------量度-------动能的变化
20, 动能和势能: 动能: Ek =
重力势能:Ep = mgh (与零势能面的选择有关)
21,动能定理:外力所做的总功等于物体动能的变化(增量).
公式: W合= Ek = Ek2 - Ek1 = 22,机械能守恒定律:机械能 = 动能+重力势能+弹性势能
条件:系统只有内部的重力或弹力做功.
公式: mgh1 + 或者 Ep减 = Ek增
23,能量守恒(做功与能量转化的关系):有相互摩擦力的系统,减少的机械能等于摩擦力所做的功.
E = Q = f S相
24,功率: P = (在t时间内力对物体做功的平均功率)
P = FV (F为牵引力,不是合外力;V为即时速度时,P为即时功率;V为平均速度时,P为平均功率; P一定时,F与V成正比)
25, 简谐振动: 回复力: F = -KX 加速度:a = -
单摆周期公式: T= 2 (与摆球质量,振幅无关)
(了解)弹簧振子周期公式:T= 2 (与振子质量,弹簧劲度系数有关,与振幅无关)
26, 波长,波速,频率的关系: V == f (适用于一切波)
二,热学
1,热力学第一定律:U = Q + W
符号法则:外界对物体做功,W为"+".物体对外做功,W为"-";
物体从外界吸热,Q为"+";物体对外界放热,Q为"-".
物体内能增量U是取"+";物体内能减少,U取"-".
2 ,热力学第二定律:
表述一:不可能使热量由低温物体传递到高温物体,而不引起其他变化.
表述二:不可能从单一的热源吸收热量并把它全部用来对外做功,而不引起其他变化.
表述三:第二类永动机是不可能制成的.
3,理想气体状态方程:
(1)适用条件:一定质量的理想气体,三个状态参量同时发生变化.
(2) 公式: 恒量
4,热力学温度:T = t + 273 单位:开(K)
(绝对零度是低温的极限,不可能达到)
三,电磁学
(一)直流电路
1,电流的定义: I = (微观表示: I=nesv,n为单位体积内的电荷数)
2,电阻定律: R=ρ (电阻率ρ只与导体材料性质和温度有关,与导体横截面积和长度无关)
3,电阻串联,并联:
串联:R=R1+R2+R3 +……+Rn
并联: 两个电阻并联: R=
4,欧姆定律:(1)部分电路欧姆定律: U=IR
(2)闭合电路欧姆定律:I =
路端电压: U = -I r= IR
电源输出功率: = Iε-Ir =
电源热功率:
电源效率: = =
(3)电功和电功率:
电功:W=IUt 电热:Q= 电功率 :P=IU
对于纯电阻电路: W=IUt= P=IU =
对于非纯电阻电路: W=Iut P=IU
(4)电池组的串联:每节电池电动势为`内阻为,n节电池串联时:
电动势:ε=n 内阻:r=n
(二)电场
1,电场的力的性质:
电场强度:(定义式) E = (q 为试探电荷,场强的大小与q无关)
点电荷电场的场强: E = (注意场强的矢量性)
2,电场的能的性质:
电势差: U = (或 W = U q )
UAB = φA - φB
电场力做功与电势能变化的关系:U = - W
3,匀强电场中场强跟电势差的关系: E = (d 为沿场强方向的距离)
4,带电粒子在电场中的运动:
铀? Uq =mv2
②偏转:运动分解: x= vo t ; vx = vo ; y =a t2 ; vy= a t
a =
(三)磁场
几种典型的磁场:通电直导线,通电螺线管,环形电流,地磁场的磁场分布.
磁场对通电导线的作用(安培力):F = BIL (要求 B⊥I, 力的方向由左手定则判定;若B‖I,则力的大小为零)
磁场对运动电荷的作用(洛仑兹力): F = qvB (要求v⊥B, 力的方向也是由左手定则判定,但四指必须指向正电荷的运动方向;若B‖v,则力的大小为零)
带电粒子在磁场中运动:当带电粒子垂直射入匀强磁场时,洛仑兹力提供向心力,带电粒子做匀速圆周运动.即: qvB =
可得: r = , T = (确定圆心和半径是关键)
(四)电磁感应
1,感应电流的方向判定:①导体切割磁感应线:右手定则;②磁通量发生变化:楞次定律.
2,感应电动势的大小:① E = BLV (要求L垂直于B,V,否则要分解到垂直的方向上 ) ② E = (①式常用于计算瞬时值,②式常用于计算平均值)
(五)交变电流
1,交变电流的产生:线圈在磁场中匀速转动,若线圈从中性面(线圈平面与磁场方向垂直)开始转动,其感应电动势瞬时值为:e = Em sinωt ,其中 感应电动势最大值:Em = nBSω .
2 ,正弦式交流的有效值:E = ;U = ; I =
(有效值用于计算电流做功,导体产生的热量等;而计算通过导体的电荷量要用交流的平均值)
3 ,电感和电容对交流的影响:
电感:通直流,阻交流;通低频,阻高频
电容:通交流,隔直流;通高频,阻低频
电阻:交,直流都能通过,且都有阻碍
4,变压器原理(理想变压器):
①电压: ② 功率:P1 = P2
③ 电流:如果只有一个副线圈 : ;
若有多个副线圈:n1I1= n2I2 + n3I3
电磁振荡(LC回路)的周期:T = 2π
四,光学
1,光的折射定律:n =
介质的折射率:n =
2,全反射的条件:①光由光密介质射入光疏介质;②入射角大于或等于临界角. 临界角C: sin C =
3,双缝干涉的规律:
①路程差ΔS = (n=0,1,2,3--) 明条纹
(2n+1) (n=0,1,2,3--) 暗条纹
相邻的两条明条纹(或暗条纹)间的距离:ΔX =
4,光子的能量: E = hυ = h ( 其中h 为普朗克常量,等于6.63×10-34Js, υ为光的频率) (光子的能量也可写成: E = m c2 )
(爱因斯坦)光电效应方程: Ek = hυ - W (其中Ek为光电子的最大初动能,W为金属的逸出功,与金属的种类有关)
5,物质波的波长: = (其中h 为普朗克常量,p 为物体的动量)
五,原子和原子核
氢原子的能级结构.
原子在两个能级间跃迁时发射(或吸收光子):
hυ = E m - E n
核能:核反应过程中放出的能量.
质能方程: E = m C2 核反应释放核能:ΔE = Δm C2
复习建议:
1,高中物理的主干知识为力学和电磁学,两部分内容各占高考的38℅,这些内容主要出现在计算题和实验题中.
力学的重点是:①力与物体运动的关系;②万有引力定律在天文学上的应用;③动量守恒和能量守恒定律的应用;④振动和波等等.⑤⑥
解决力学问题首要任务是明确研究的对象和过程,分析物理情景,建立正确的模型.解题常有三种途径:①如果是匀变速过程,通常可以利用运动学公式和牛顿定律来求解;②如果涉及力与时间问题,通常可以用动量的观点来求解,代表规律是动量定理和动量守恒定律;③如果涉及力与位移问题,通常可以用能量的观点来求解,代表规律是动能定理和机械能守恒定律(或能量守恒定律).后两种方法由于只要考虑初,末状态,尤其适用过程复杂的变加速运动,但要注意两大守恒定律都是有条件的.
电磁学的重点是:①电场的性质;②电路的分析,设计与计算;③带电粒子在电场,磁场中的运动;④电磁感应现象中的力的问题,能量问题等等.
2,热学,光学,原子和原子核,这三部分内容在高考中各占约8℅,由于高考要求知识覆盖面广,而这些内容的分数相对较少,所以多以选择,实验的形式出现.但绝对不能认为这部分内容分数少而不重视,正因为内容少,规律少,这部分的得分率应该是很高的.
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角
弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r
乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理
判别式
b2-4ac=0 注:方程有两个相等的实根
b2-4ac>0 注:方程有两个不等的实根
b2-4ac<0 注:方程没有实根,有共轭复数根
降幂公式
(sin^2)x=1-cos2x/2
(cos^2)x=i=cos2x/2
万能公式
令tan(a/2)=t
sina=2t/(1+t^2)
cosa=(1-t^2)/(1+t^2)
tana=2t/(1-t^2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
高中物理公式、规律汇编表
一、力学
1、 胡克定律: F = kx (x为伸长量或压缩量;k为劲度系数,只与弹簧的原长、粗细和材料有关)
2、 重力: G = mg (g随离地面高度、纬度、地质结构而变化;重力约等于地面上物体受到的地球引力)
3 、求F 、 的合力:利用平行四边形定则。
注意:(1) 力的合成和分解都均遵从平行四边行法则。
(2) 两个力的合力范围: F1-F2 F F1 + F2
(3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。
4、两个平衡条件:
(1) 共点力作用下物体的平衡条件:静止或匀速直线运动的物体,所受合外力为零。
F合=0 或 : Fx合=0 Fy合=0
推论:[1]非平行的三个力作用于物体而平衡,则这三个力一定共点。
[2]三个共点力作用于物体而平衡,其中任意两个力的合力与第三个力一定等值反向
(2 )有固定转动轴物体的平衡条件:力矩代数和为零.(只要求了解)
力矩:M=FL (L为力臂,是转动轴到力的作用线的垂直距离)
5、摩擦力的公式:
(1) 滑动摩擦力: f= FN
说明 : ① FN为接触面间的弹力,可以大于G;也可以等于G;也可以小于G
② 为滑动摩擦因数,只与接触面材料和粗糙程度有关,与接触面积大小、接触面相对运动快慢以及正压力N无关.
(2) 静摩擦力:其大小与其他力有关, 由物体的平衡条件或牛顿第二定律求解,不与正压力成正比.
大小范围: O f静 fm (fm为最大静摩擦力,与正压力有关)
说明:
a 、摩擦力可以与运动方向相同,也可以与运动方向相反。
b、摩擦力可以做正功,也可以做负功,还可以不做功。
c、摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。
d、静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用。
6、 浮力: F= gV (注意单位)
7、 万有引力: F=G
(1) 适用条件:两质点间的引力(或可以看作质点,如两个均匀球体)。
(2) G为万有引力恒量,由卡文迪许用扭秤装置首先测量出。
(3) 在天体上的应用:(M--天体质量 ,m—卫星质量, R--天体半径 ,g--天体表面重力加速度,h—卫星到天体表面的高度)
a 、万有引力=向心力
G
b、在地球表面附近,重力=万有引力
mg = G g = G
c、 第一宇宙速度
mg = m V=
8、 库仑力:F=K (适用条件:真空中,两点电荷之间的作用力)
9、 电场力:F=Eq (F 与电场强度的方向可以相同,也可以相反)
10、磁场力:
(1) 洛仑兹力:磁场对运动电荷的作用力。
公式:f=qVB (BV) 方向--左手定则
(2) 安培力 : 磁场对电流的作用力。
公式:F= BIL (BI) 方向--左手定则
11、牛顿第二定律: F合 = ma 或者 Fx = m ax Fy = m ay
适用范围:宏观、低速物体
理解:(1)矢量性 (2)瞬时性 (3)独立性
(4) 同体性 (5)同系性 (6)同单位制
12、匀变速直线运动:
基本规律: Vt = V0 + a t S = vo t + a t2
几个重要推论:
(1) Vt2 - V02 = 2as (匀加速直线运动:a为正值 匀减速直线运动:a为正值)
(2) A B段中间时刻的瞬时速度:
Vt/ 2 = = (3) AB段位移中点的即时速度:
Vs/2 =
匀速:Vt/2 =Vs/2 ; 匀加速或匀减速直线运动:Vt/2 <Vs/2
(4) 初速为零的匀加速直线运动,在1s 、2s、3s¬……ns内的位移之比为12:22:32……n2; 在第1s 内、第 2s内、第3s内……第ns内的位移之比为1:3:5…… (2n-1); 在第1米内、第2米内、第3米内……第n米内的时间之比为1: : ……(
(5) 初速无论是否为零,匀变速直线运动的质点,在连续相邻的相等的时间间隔内的位移之差为一常数:s = aT2 (a--匀变速直线运动的加速度 T--每个时间间隔的时间)
13、 竖直上抛运动: 上升过程是匀减速直线运动,下落过程是匀加速直线运动。全过程是初速度为VO、加速度为g的匀减速直线运动。
(1) 上升最大高度: H =
(2) 上升的时间: t=
(3) 上升、下落经过同一位置时的加速度相同,而速度等值反向
(4) 上升、下落经过同一段位移的时间相等。 从抛出到落回原位置的时间:t =
(5)适用全过程的公式: S = Vo t -- g t2 Vt = Vo-g t
Vt2 -Vo2 = - 2 gS ( S、Vt的正、负号的理解)
14、匀速圆周运动公式
线速度: V= R =2 f R=
角速度:=
向心加速度:a = 2 f2 R
向心力: F= ma = m 2 R= m m4 n2 R
注意:(1)匀速圆周运动的物体的向心力就是物体所受的合外力,总是指向圆心。
(2)卫星绕地球、行星绕太阳作匀速圆周运动的向心力由万有引力提供。
(3) 氢原子核外电子绕原子核作匀速圆周运动的向心力由原子核对核外电子的库仑力提供。
15、平抛运动公式:匀速直线运动和初速度为零的匀加速直线运动的合运动
水平分运动: 水平位移: x= vo t 水平分速度:vx = vo
竖直分运动: 竖直位移: y = g t2 竖直分速度:vy= g t
tg = Vy = Votg Vo =Vyctg
V = Vo = Vcos Vy = Vsin
在Vo、Vy、V、X、y、t、七个物理量中,如果 已知其中任意两个,可根据以上公式求出其它五个物理量。
16、 动量和冲量: 动量: P = mV 冲量:I = F t
(要注意矢量性)
17 、动量定理: 物体所受合外力的冲量等于它的动量的变化。
公式: F合t = mv’ - mv (解题时受力分析和正方向的规定是关键)
18、动量守恒定律:相互作用的物体系统,如果不受外力,或它们所受的外力之和为零,它们的总动量保持不变。 (研究对象:相互作用的两个物体或多个物体)
公式:m1v1 + m2v2 = m1 v1‘+ m2v2’或p1 =- p2 或p1 +p2=O
适用条件:
(1)系统不受外力作用。 (2)系统受外力作用,但合外力为零。
(3)系统受外力作用,合外力也不为零,但合外力远小于物体间的相互作用力。
(4)系统在某一个方向的合外力为零,在这个方向的动量守恒。
19、 功 : W = Fs cos (适用于恒力的功的计算)
(1) 理解正功、零功、负功
(2) 功是能量转化的量度
重力的功------量度------重力势能的变化
电场力的功-----量度------电势能的变化
分子力的功-----量度------分子势能的变化
合外力的功------量度-------动能的变化
20、 动能和势能: 动能: Ek =
重力势能:Ep = mgh (与零势能面的选择有关)
21、动能定理:外力所做的总功等于物体动能的变化(增量)。
公式: W合= Ek = Ek2 - Ek1 = 22、机械能守恒定律:机械能 = 动能+重力势能+弹性势能
条件:系统只有内部的重力或弹力做功.
公式: mgh1 + 或者 Ep减 = Ek增
23、能量守恒(做功与能量转化的关系):有相互摩擦力的系统,减少的机械能等于摩擦力所做的功。
E = Q = f S相
24、功率: P = (在t时间内力对物体做功的平均功率)
P = FV (F为牵引力,不是合外力;V为即时速度时,P为即时功率;V为平均速度时,P为平均功率; P一定时,F与V成正比)
25、 简谐振动: 回复力: F = -KX 加速度:a = -
单摆周期公式: T= 2 (与摆球质量、振幅无关)
(了解)弹簧振子周期公式:T= 2 (与振子质量、弹簧劲度系数有关,与振幅无关)
26、 波长、波速、频率的关系: V = = f (适用于一切波)
二、热学
1、热力学第一定律:U = Q + W
符号法则:外界对物体做功,W为“+”。物体对外做功,W为“-”;
物体从外界吸热,Q为“+”;物体对外界放热,Q为“-”。
物体内能增量U是取“+”;物体内能减少,U取“-”。
2 、热力学第二定律:
表述一:不可能使热量由低温物体传递到高温物体,而不引起其他变化。
表述二:不可能从单一的热源吸收热量并把它全部用来对外做功,而不引起其他变化。
表述三:第二类永动机是不可能制成的。
3、理想气体状态方程:
(1)适用条件:一定质量的理想气体,三个状态参量同时发生变化。
(2) 公式: 恒量
4、热力学温度:T = t + 273 单位:开(K)
(绝对零度是低温的极限,不可能达到)
三、电磁学
(一)直流电路
1、电流的定义: I = (微观表示: I=nesv,n为单位体积内的电荷数)
2、电阻定律: R=ρ (电阻率ρ只与导体材料性质和温度有关,与导体横截面积和长度无关)
3、电阻串联、并联:
串联:R=R1+R2+R3 +……+Rn
并联: 两个电阻并联: R=
4、欧姆定律: (1)部分电路欧姆定律: U=IR
(2)闭合电路欧姆定律:I =
路端电压: U = -I r= IR
电源输出功率: = Iε-I r =
电源热功率:
电源效率: = =RR+r
(3)电功和电功率:
电功:W=IUt 电热:Q= 电功率 :P=IU
对于纯电阻电路: W=IUt= P=IU =
对于非纯电阻电路: W=Iut P=IU
(4)电池组的串联:每节电池电动势为 `内阻为 ,n节电池串联时:
电动势:ε=n 内阻:r=n
(二)电场
1、电场的力的性质:
电场强度:(定义式) E = (q 为试探电荷,场强的大小与q无关)
点电荷电场的场强: E = (注意场强的矢量性)
2、电场的能的性质:
电势差: U = (或 W = U q )
UAB = φA - φB
电场力做功与电势能变化的关系:U = - W
3、匀强电场中场强跟电势差的关系: E = (d 为沿场强方向的距离)
4、带电粒子在电场中的运动:
① 加速: Uq = mv2
②偏转:运动分解: x= vo t ; vx = vo ; y = a t2 ; vy= a t
a =
(三)磁场
1、 几种典型的磁场:通电直导线、通电螺线管、环形电流、地磁场的磁场分布。
2、 磁场对通电导线的作用(安培力):F = BIL (要求 B⊥I, 力的方向由左手定则判定;若B‖I,则力的大小为零)
3、 磁场对运动电荷的作用(洛仑兹力): F = qvB (要求v⊥B, 力的方向也是由左手定则判定,但四指必须指向正电荷的运动方向;若B‖v,则力的大小为零)
4、 带电粒子在磁场中运动:当带电粒子垂直射入匀强磁场时,洛仑兹力提供向心力,带电粒子做匀速圆周运动。即: qvB =
可得: r = , T = (确定圆心和半径是关键)
(四)电磁感应
1、感应电流的方向判定:①导体切割磁感应线:右手定则;②磁通量发生变化:楞次定律。
2、感应电动势的大小:① E = BLV (要求L垂直于B、V,否则要分解到垂直的方向上 ) ② E = (①式常用于计算瞬时值,②式常用于计算平均值)
(五)交变电流
1、交变电流的产生:线圈在磁场中匀速转动,若线圈从中性面(线圈平面与磁场方向垂直)开始转动,其感应电动势瞬时值为:e = Em sinωt ,其中 感应电动势最大值:Em = nBSω .
2 、正弦式交流的有效值:E = ;U = ; I =
(有效值用于计算电流做功,导体产生的热量等;而计算通过导体的电荷量要用交流的平均值)
3 、电感和电容对交流的影响:
① 电感:通直流,阻交流;通低频,阻高频
② 电容:通交流,隔直流;通高频,阻低频
③ 电阻:交、直流都能通过,且都有阻碍
4、变压器原理(理想变压器):
①电压: ② 功率:P1 = P2
③ 电流:如果只有一个副线圈 : ;
若有多个副线圈:n1I1= n2I2 + n3I3
5、 电磁振荡(LC回路)的周期:T = 2π
四、光学
1、光的折射定律:n =
介质的折射率:n =
2、全反射的条件:①光由光密介质射入光疏介质;②入射角大于或等于临界角。 临界角C: sin C =
3、双缝干涉的规律:
①路程差ΔS = (n=0,1,2,3--) 明条纹
(2n+1) (n=0,1,2,3--) 暗条纹
② 相邻的两条明条纹(或暗条纹)间的距离:ΔX =
4、光子的能量: E = hυ = h ( 其中h 为普朗克常量,等于6.63×10-34Js, υ为光的频率) (光子的能量也可写成: E = m c2 )
(爱因斯坦)光电效应方程: Ek = hυ - W (其中Ek为光电子的最大初动能,W为金属的逸出功,与金属的种类有关)
5、物质波的波长: = (其中h 为普朗克常量,p 为物体的动量)
五、原子和原子核
1、 氢原子的能级结构。
原子在两个能级间跃迁时发射(或吸收光子):
hυ = E m - E n
2、 核能:核反应过程中放出的能量。
质能方程: E = m C2 核反应释放核能:ΔE = Δm C2
复习建议:
1、高中物理的主干知识为力学和电磁学,两部分内容各占高考的38℅,这些内容主要出现在计算题和实验题中。
力学的重点是:①力与物体运动的关系;②万有引力定律在天文学上的应用;③动量守恒和能量守恒定律的应用;④振动和波等等。⑤⑥
解决力学问题首要任务是明确研究的对象和过程,分析物理情景,建立正确的模型。解题常有三种途径:①如果是匀变速过程,通常可以利用运动学公式和牛顿定律来求解;②如果涉及力与时间问题,通常可以用动量的观点来求解,代表规律是动量定理和动量守恒定律;③如果涉及力与位移问题,通常可以用能量的观点来求解,代表规律是动能定理和机械能守恒定律(或能量守恒定律)。后两种方法由于只要考虑初、末状态,尤其适用过程复杂的变加速运动,但要注意两大守恒定律都是有条件的。
电磁学的重点是:①电场的性质;②电路的分析、设计与计算;③带电粒子在电场、磁场中的运动;④电磁感应现象中的力的问题、能量问题等等。
2、热学、光学、原子和原子核,这三部分内容在高考中各占约8℅,由于高考要求知识覆盖面广,而这些内容的分数相对较少,所以多以选择、实验的形式出现。但绝对不能认为这部分内容分数少而不重视,正因为内容少、规律少,这部分的得分率应该是很高的。
一、力学
1、 胡克定律: F = kx (x为伸长量或压缩量;k为劲度系数,只与弹簧的原长、粗细和材料有关)
2、 重力: G = mg (g随离地面高度、纬度、地质结构而变化;重力约等于地面上物体受到的地球引力)
3 、求F 、 的合力:利用平行四边形定则。
注意:(1) 力的合成和分解都均遵从平行四边行法则。
(2) 两个力的合力范围: F1-F2 F F1 + F2
(3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。
4、两个平衡条件:
(1) 共点力作用下物体的平衡条件:静止或匀速直线运动的物体,所受合外力为零。
F合=0 或 : Fx合=0 Fy合=0
推论:[1]非平行的三个力作用于物体而平衡,则这三个力一定共点。
[2]三个共点力作用于物体而平衡,其中任意两个力的合力与第三个力一定等值反向
(2 )有固定转动轴物体的平衡条件:力矩代数和为零.(只要求了解)
力矩:M=FL (L为力臂,是转动轴到力的作用线的垂直距离)
5、摩擦力的公式:
(1) 滑动摩擦力: f= FN
说明 : ① FN为接触面间的弹力,可以大于G;也可以等于G;也可以小于G
② 为滑动摩擦因数,只与接触面材料和粗糙程度有关,与接触面积大小、接触面相对运动快慢以及正压力N无关.
(2) 静摩擦力:其大小与其他力有关, 由物体的平衡条件或牛顿第二定律求解,不与正压力成正比.
大小范围: O f静 fm (fm为最大静摩擦力,与正压力有关)
说明:
a 、摩擦力可以与运动方向相同,也可以与运动方向相反。
b、摩擦力可以做正功,也可以做负功,还可以不做功。
c、摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。
d、静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用。
6、 浮力: F= gV (注意单位)
7、 万有引力: F=G
(1) 适用条件:两质点间的引力(或可以看作质点,如两个均匀球体)。
(2) G为万有引力恒量,由卡文迪许用扭秤装置首先测量出。
(3) 在天体上的应用:(M--天体质量 ,m—卫星质量, R--天体半径 ,g--天体表面重力加速度,h—卫星到天体表面的高度)
a 、万有引力=向心力
G
b、在地球表面附近,重力=万有引力
mg = G g = G
c、 第一宇宙速度
mg = m V=
8、 库仑力:F=K (适用条件:真空中,两点电荷之间的作用力)
9、 电场力:F=Eq (F 与电场强度的方向可以相同,也可以相反)
10、磁场力:
(1) 洛仑兹力:磁场对运动电荷的作用力。
公式:f=qVB (BV) 方向--左手定则
(2) 安培力 : 磁场对电流的作用力。
公式:F= BIL (BI) 方向--左手定则
11、牛顿第二定律: F合 = ma 或者 Fx = m ax Fy = m ay
适用范围:宏观、低速物体
理解:(1)矢量性 (2)瞬时性 (3)独立性
(4) 同体性 (5)同系性 (6)同单位制
12、匀变速直线运动:
基本规律: Vt = V0 + a t S = vo t + a t2
几个重要推论:
(1) Vt2 - V02 = 2as (匀加速直线运动:a为正值 匀减速直线运动:a为正值)
(2) A B段中间时刻的瞬时速度:
Vt/ 2 = = (3) AB段位移中点的即时速度:
Vs/2 =
匀速:Vt/2 =Vs/2 ; 匀加速或匀减速直线运动:Vt/2 <Vs/2
(4) 初速为零的匀加速直线运动,在1s 、2s、3s¬……ns内的位移之比为12:22:32……n2; 在第1s 内、第 2s内、第3s内……第ns内的位移之比为1:3:5…… (2n-1); 在第1米内、第2米内、第3米内……第n米内的时间之比为1: : ……(
(5) 初速无论是否为零,匀变速直线运动的质点,在连续相邻的相等的时间间隔内的位移之差为一常数:s = aT2 (a--匀变速直线运动的加速度 T--每个时间间隔的时间)
13、 竖直上抛运动: 上升过程是匀减速直线运动,下落过程是匀加速直线运动。全过程是初速度为VO、加速度为g的匀减速直线运动。
(1) 上升最大高度: H =
(2) 上升的时间: t=
(3) 上升、下落经过同一位置时的加速度相同,而速度等值反向
(4) 上升、下落经过同一段位移的时间相等。 从抛出到落回原位置的时间:t =
(5)适用全过程的公式: S = Vo t -- g t2 Vt = Vo-g t
Vt2 -Vo2 = - 2 gS ( S、Vt的正、负号的理解)
14、匀速圆周运动公式
线速度: V= R =2 f R=
角速度:=
向心加速度:a = 2 f2 R
向心力: F= ma = m 2 R= m m4 n2 R
注意:(1)匀速圆周运动的物体的向心力就是物体所受的合外力,总是指向圆心。
(2)卫星绕地球、行星绕太阳作匀速圆周运动的向心力由万有引力提供。
(3) 氢原子核外电子绕原子核作匀速圆周运动的向心力由原子核对核外电子的库仑力提供。
15、平抛运动公式:匀速直线运动和初速度为零的匀加速直线运动的合运动
水平分运动: 水平位移: x= vo t 水平分速度:vx = vo
竖直分运动: 竖直位移: y = g t2 竖直分速度:vy= g t
tg = Vy = Votg Vo =Vyctg
V = Vo = Vcos Vy = Vsin
在Vo、Vy、V、X、y、t、七个物理量中,如果 已知其中任意两个,可根据以上公式求出其它五个物理量。
16、 动量和冲量: 动量: P = mV 冲量:I = F t
(要注意矢量性)
17 、动量定理: 物体所受合外力的冲量等于它的动量的变化。
公式: F合t = mv’ - mv (解题时受力分析和正方向的规定是关键)
18、动量守恒定律:相互作用的物体系统,如果不受外力,或它们所受的外力之和为零,它们的总动量保持不变。 (研究对象:相互作用的两个物体或多个物体)
公式:m1v1 + m2v2 = m1 v1‘+ m2v2’或p1 =- p2 或p1 +p2=O
适用条件:
(1)系统不受外力作用。 (2)系统受外力作用,但合外力为零。
(3)系统受外力作用,合外力也不为零,但合外力远小于物体间的相互作用力。
(4)系统在某一个方向的合外力为零,在这个方向的动量守恒。
19、 功 : W = Fs cos (适用于恒力的功的计算)
(1) 理解正功、零功、负功
(2) 功是能量转化的量度
重力的功------量度------重力势能的变化
电场力的功-----量度------电势能的变化
分子力的功-----量度------分子势能的变化
合外力的功------量度-------动能的变化
20、 动能和势能: 动能: Ek =
重力势能:Ep = mgh (与零势能面的选择有关)
21、动能定理:外力所做的总功等于物体动能的变化(增量)。
公式: W合= Ek = Ek2 - Ek1 = 22、机械能守恒定律:机械能 = 动能+重力势能+弹性势能
条件:系统只有内部的重力或弹力做功.
公式: mgh1 + 或者 Ep减 = Ek增
23、能量守恒(做功与能量转化的关系):有相互摩擦力的系统,减少的机械能等于摩擦力所做的功。
E = Q = f S相
24、功率: P = (在t时间内力对物体做功的平均功率)
P = FV (F为牵引力,不是合外力;V为即时速度时,P为即时功率;V为平均速度时,P为平均功率; P一定时,F与V成正比)
25、 简谐振动: 回复力: F = -KX 加速度:a = -
单摆周期公式: T= 2 (与摆球质量、振幅无关)
(了解)弹簧振子周期公式:T= 2 (与振子质量、弹簧劲度系数有关,与振幅无关)
26、 波长、波速、频率的关系: V = = f (适用于一切波)
二、热学
1、热力学第一定律:U = Q + W
符号法则:外界对物体做功,W为“+”。物体对外做功,W为“-”;
物体从外界吸热,Q为“+”;物体对外界放热,Q为“-”。
物体内能增量U是取“+”;物体内能减少,U取“-”。
2 、热力学第二定律:
表述一:不可能使热量由低温物体传递到高温物体,而不引起其他变化。
表述二:不可能从单一的热源吸收热量并把它全部用来对外做功,而不引起其他变化。
表述三:第二类永动机是不可能制成的。
3、理想气体状态方程:
(1)适用条件:一定质量的理想气体,三个状态参量同时发生变化。
(2) 公式: 恒量
4、热力学温度:T = t + 273 单位:开(K)
(绝对零度是低温的极限,不可能达到)
三、电磁学
(一)直流电路
1、电流的定义: I = (微观表示: I=nesv,n为单位体积内的电荷数)
2、电阻定律: R=ρ (电阻率ρ只与导体材料性质和温度有关,与导体横截面积和长度无关)
3、电阻串联、并联:
串联:R=R1+R2+R3 +……+Rn
并联: 两个电阻并联: R=
4、欧姆定律: (1)部分电路欧姆定律: U=IR
(2)闭合电路欧姆定律:I =
路端电压: U = -I r= IR
电源输出功率: = Iε-I r =
电源热功率:
电源效率: = =RR+r
(3)电功和电功率:
电功:W=IUt 电热:Q= 电功率 :P=IU
对于纯电阻电路: W=IUt= P=IU =
对于非纯电阻电路: W=Iut P=IU
(4)电池组的串联:每节电池电动势为 `内阻为 ,n节电池串联时:
电动势:ε=n 内阻:r=n
(二)电场
1、电场的力的性质:
电场强度:(定义式) E = (q 为试探电荷,场强的大小与q无关)
点电荷电场的场强: E = (注意场强的矢量性)
2、电场的能的性质:
电势差: U = (或 W = U q )
UAB = φA - φB
电场力做功与电势能变化的关系:U = - W
3、匀强电场中场强跟电势差的关系: E = (d 为沿场强方向的距离)
4、带电粒子在电场中的运动:
① 加速: Uq = mv2
②偏转:运动分解: x= vo t ; vx = vo ; y = a t2 ; vy= a t
a =
(三)磁场
1、 几种典型的磁场:通电直导线、通电螺线管、环形电流、地磁场的磁场分布。
2、 磁场对通电导线的作用(安培力):F = BIL (要求 B⊥I, 力的方向由左手定则判定;若B‖I,则力的大小为零)
3、 磁场对运动电荷的作用(洛仑兹力): F = qvB (要求v⊥B, 力的方向也是由左手定则判定,但四指必须指向正电荷的运动方向;若B‖v,则力的大小为零)
4、 带电粒子在磁场中运动:当带电粒子垂直射入匀强磁场时,洛仑兹力提供向心力,带电粒子做匀速圆周运动。即: qvB =
可得: r = , T = (确定圆心和半径是关键)
(四)电磁感应
1、感应电流的方向判定:①导体切割磁感应线:右手定则;②磁通量发生变化:楞次定律。
2、感应电动势的大小:① E = BLV (要求L垂直于B、V,否则要分解到垂直的方向上 ) ② E = (①式常用于计算瞬时值,②式常用于计算平均值)
(五)交变电流
1、交变电流的产生:线圈在磁场中匀速转动,若线圈从中性面(线圈平面与磁场方向垂直)开始转动,其感应电动势瞬时值为:e = Em sinωt ,其中 感应电动势最大值:Em = nBSω .
2 、正弦式交流的有效值:E = ;U = ; I =
(有效值用于计算电流做功,导体产生的热量等;而计算通过导体的电荷量要用交流的平均值)
3 、电感和电容对交流的影响:
① 电感:通直流,阻交流;通低频,阻高频
② 电容:通交流,隔直流;通高频,阻低频
③ 电阻:交、直流都能通过,且都有阻碍
4、变压器原理(理想变压器):
①电压: ② 功率:P1 = P2
③ 电流:如果只有一个副线圈 : ;
若有多个副线圈:n1I1= n2I2 + n3I3
5、 电磁振荡(LC回路)的周期:T = 2π
四、光学
1、光的折射定律:n =
介质的折射率:n =
2、全反射的条件:①光由光密介质射入光疏介质;②入射角大于或等于临界角。 临界角C: sin C =
3、双缝干涉的规律:
①路程差ΔS = (n=0,1,2,3--) 明条纹
(2n+1) (n=0,1,2,3--) 暗条纹
② 相邻的两条明条纹(或暗条纹)间的距离:ΔX =
4、光子的能量: E = hυ = h ( 其中h 为普朗克常量,等于6.63×10-34Js, υ为光的频率) (光子的能量也可写成: E = m c2 )
(爱因斯坦)光电效应方程: Ek = hυ - W (其中Ek为光电子的最大初动能,W为金属的逸出功,与金属的种类有关)
5、物质波的波长: = (其中h 为普朗克常量,p 为物体的动量)
五、原子和原子核
1、 氢原子的能级结构。
原子在两个能级间跃迁时发射(或吸收光子):
hυ = E m - E n
2、 核能:核反应过程中放出的能量。
质能方程: E = m C2 核反应释放核能:ΔE = Δm C2
复习建议:
1、高中物理的主干知识为力学和电磁学,两部分内容各占高考的38℅,这些内容主要出现在计算题和实验题中。
力学的重点是:①力与物体运动的关系;②万有引力定律在天文学上的应用;③动量守恒和能量守恒定律的应用;④振动和波等等。⑤⑥
解决力学问题首要任务是明确研究的对象和过程,分析物理情景,建立正确的模型。解题常有三种途径:①如果是匀变速过程,通常可以利用运动学公式和牛顿定律来求解;②如果涉及力与时间问题,通常可以用动量的观点来求解,代表规律是动量定理和动量守恒定律;③如果涉及力与位移问题,通常可以用能量的观点来求解,代表规律是动能定理和机械能守恒定律(或能量守恒定律)。后两种方法由于只要考虑初、末状态,尤其适用过程复杂的变加速运动,但要注意两大守恒定律都是有条件的。
电磁学的重点是:①电场的性质;②电路的分析、设计与计算;③带电粒子在电场、磁场中的运动;④电磁感应现象中的力的问题、能量问题等等。
2、热学、光学、原子和原子核,这三部分内容在高考中各占约8℅,由于高考要求知识覆盖面广,而这些内容的分数相对较少,所以多以选择、实验的形式出现。但绝对不能认为这部分内容分数少而不重视,正因为内容少、规律少,这部分的得分率应该是很高的。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
V排÷V物=P物÷P液(F浮=G物)
V露÷V排=P液-P物÷P物
V露÷V物=P液-P物÷P液
V排=V物时,G÷F浮=P物÷P液
物理定理、定律、公式表
一、质点的运动(1)------直线运动
1)匀变速直线运动
1.平均速度V平=s/t(定义式)
2.有用推论Vt^2-Vo^2=2as
3.中间时刻速度Vt/2=V平=(Vt+Vo)/2
4.末速度Vt=Vo+at
5.中间位置速度Vs/2=[(Vo^2+Vt^2)/2]^(1/2)
6.位移s=V平t=Vot+(at^2)/2=Vt/2t
7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}
8.实验用推论Δs=aT^2 {Δs为连续相邻相等时间(T)内位移之差}
9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。
注:
(1)平均速度是矢量;
(2)物体速度大,加速度不一定大;
(3)a=(Vt-Vo)/t只是量度式,不是决定式;
(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。
2)自由落体运动
1.初速度Vo=0
2.末速度Vt=gt
3.下落高度h=gt2/2(从Vo位置向下计算)
4.推论Vt^2=2gh
注:
(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;
(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。
3)竖直上抛运动
1.位移s=Vot-(gt^2)/2
2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)
3.有用推论Vt2-Vo2=-2gs
4.上升最大高度Hmax=Vo^2/2g(抛出点算起)
5.往返时间t=2Vo/g (从抛出落回原位置的时间)
注:
(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;
(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;
(3)上升与下落过程具有对称性,如在同点速度等值反向等。
二、质点的运动(2)----曲线运动、万有引力
1)平抛运动
1.水平方向速度:Vx=Vo
2.竖直方向速度:Vy=gt
3.水平方向位移:x=Vot
4.竖直方向位移:y=gt^2/2
5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)
6.合速度Vt=根号(Vx^2+Vy^2)=根号[Vo^2+(gt)^2] (合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0 )
7.合位移:s=根号(x^2+y^2) (位移方向与水平夹角α:tgα=y/x=gt/2Vo )
8.水平方向加速度:ax=0;竖直方向加速度:ay=g
注:
(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;
(2)运动时间由下落高度h(y)决定与水平抛出速度无关;
(3)θ与β的关系为tgβ=2tgα;
(4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。
2)匀速圆周运动
1.线速度V=s/t=2πr/T
2.角速度ω=Φ/t=2π/T=2πf
3.向心加速度a=V2/r=ω2r=(2π/T)2r
4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合
5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr
7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)
8.主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。
注:
(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;
(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。
3)万有引力
1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}
2.万有引力定律:F=G(m1m2)/r^2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上)
3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}
4.卫星绕行速度、角速度、周期:V=根号(GM/r);ω=根号(GM/r3);T=根号((4π^2r^3)/GM){M:中心天体质量}
5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s
6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}
注:
(1)天体运动所需的向心力由万有引力提供,F向=F万;
(2)应用万有引力定律可估算天体的质量密度等;
(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;
(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);
(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。
三、力(常见的力、力的合成与分解)
1)常见的力
1.重力G=mg (方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)
2.胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}
3.滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}
4.静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力)
5.万有引力F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上)
6.静电力F=kQ1Q2/r2 (k=9.0×109N?m2/C2,方向在它们的连线上)
7.电场力F=Eq (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)
8.安培力F=BILsinθ (θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)
9.洛仑兹力f=qVBsinθ (θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)
注:
(1)劲度系数k由弹簧自身决定;
(2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定;
(3)fm略大于μFN,一般视为fm≈μFN;
(4)其它相关内容:静摩擦力(大小、方向)〔见第一册P7〕;
(5)物理量符号及单位B:磁感强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(m/s),q:带电粒子(带电体)电量(C);
(6)安培力与洛仑兹力方向均用左手定则判定。
2)力的合成与分解
1.同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)
2.互成角度力的合成:
F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2
3.合力大小范围:|F1-F2|≤F≤|F1+F2|
4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)
注:
(1)力(矢量)的合成与分解遵循平行四边形定则;
(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;
(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;
(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;
(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。
四、动力学(运动和力)
1.牛顿第一定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止
2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}
3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}
4.共点力的平衡F合=0,推广 {正交分解法、三力汇交原理}
5.超重:FN>G,失重:FN<G {加速度方向向下,均失重,加速度方向向上,均超重}
6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子〔见第一册P57〕
注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。
五、振动和波(机械振动与机械振动的传播)
1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}
2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}
3.受振动频率特点:f=f驱动力
4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕
5.机械波、横波、纵波〔见第二册P2〕
6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}
7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)
8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大
9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)
10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕}
注:
(1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;
(2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处;
(3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式;
(4)干涉与衍射是波特有的;
(5)振动图象与波动图象;
(6)其它相关内容:超声波及其应用〔见第二册P62〕/振动中的能量转化〔见第一册P63〕。
六、冲量与动量(物体的受力与动量的变化)
1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}
3.冲量:I=Ft {I:冲量(N?s),F:恒力(N),t:力的作用时间(s),方向由F决定}
4.动量定理:I=Δp或Ft=mvt–mvo {Δp:动量变化Δp=mvt–mvo,是矢量式}
5.动量守恒定律:p前总=p后总或p=p'′也可以是m1v1+m2v2=m1v1′+m2v2′
6.弹性碰撞:Δp=0;ΔEk=0 {即系统的动量和动能均守恒}
7.非弹性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:损失的动能,EKm:损失的最大动能}
8.完全非弹性碰撞Δp=0;ΔEK=ΔEKm {碰后连在一起成一整体}
9.物体m1以v1初速度与静止的物体m2发生弹性正碰:
v1′=(m1-m2)v1/(m1+m2) v2′=2m1v1/(m1+m2)
10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)
11.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失
E损=mvo2/2-(M+m)vt2/2=fs相对 {vt:共同速度,f:阻力,s相对子弹相对长木块的位移}
注:
(1)正碰又叫对心碰撞,速度方向在它们“中心”的连线上;
(2)以上表达式除动能外均为矢量运算,在一维情况下可取正方向化为代数运算;
(3)系统动量守恒的条件:合外力为零或系统不受外力,则系统动量守恒(碰撞问题、爆炸问题、反冲问题等);
(4)碰撞过程(时间极短,发生碰撞的物体构成的系统)视为动量守恒,原子核衰变时动量守恒;
(5)爆炸过程视为动量守恒,这时化学能转化为动能,动能增加;(6)其它相关内容:反冲运动、火箭、航天技术的发展和宇宙航行〔见第一册P128〕。
七、功和能(功是能量转化的量度)
1.功:W=Fscosα(定义式){W:功(J),F:恒力(N),s:位移(m),α:F、s间的夹角}
2.重力做功:Wab=mghab {m:物体的质量,g=9.8m/s2≈10m/s2,hab:a与b高度差(hab=ha-hb)}
3.电场力做功:Wab=qUab {q:电量(C),Uab:a与b之间电势差(V)即Uab=φa-φb}
4.电功:W=UIt(普适式) {U:电压(V),I:电流(A),t:通电时间(s)}
5.功率:P=W/t(定义式) {P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)}
6.汽车牵引力的功率:P=Fv;P平=Fv平 {P:瞬时功率,P平:平均功率}
7.汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmax=P额/f)
8.电功率:P=UI(普适式) {U:电路电压(V),I:电路电流(A)}
9.焦耳定律:Q=I2Rt {Q:电热(J),I:电流强度(A),R:电阻值(Ω),t:通电时间(s)}
10.纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt
11.动能:Ek=mv2/2 {Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)}
12.重力势能:EP=mgh {EP :重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)}
13.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)(从零势能面起)}
14.动能定理(对物体做正功,物体的动能增加):
W合=mvt2/2-mvo2/2或W合=ΔEK
{W合:外力对物体做的总功,ΔEK:动能变化ΔEK=(mvt2/2-mvo2/2)}
15.机械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2
16.重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=-ΔEP
注:
(1)功率大小表示做功快慢,做功多少表示能量转化多少;
(2)O0≤α<90O 做正功;90O<α≤180O做负功;α=90o不做功(力的方向与位移(速度)方向垂直时该力不做功);
(3)重力(弹力、电场力、分子力)做正功,则重力(弹性、电、分子)势能减少
(4)重力做功和电场力做功均与路径无关(见2、3两式);(5)机械能守恒成立条件:除重力(弹力)外其它力不做功,只是动能和势能之间的转化;(6)能的其它单位换算:1kWh(度)=3.6×106J,1eV=1.60×10-19J;*(7)弹簧弹性势能E=kx2/2,与劲度系数和形变量有关。
八、分子动理论、能量守恒定律
1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米
2.油膜法测分子直径d=V/s {V:单分子油膜的体积(m3),S:油膜表面积(m)2}
3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。
4.分子间的引力和斥力(1)r<r0,f引<f斥,F分子力表现为斥力
(2)r=r0,f引=f斥,F分子力=0,E分子势能=Emin(最小值)
(3)r>r0,f引>f斥,F分子力表现为引力
(4)r>10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0
5.热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的),
W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出〔见第二册P40〕}
6.热力学第二定律
克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性);
开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性){涉及到第二类永动机不可造出〔见第二册P44〕}
7.热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)}
注:
(1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈;
(2)温度是分子平均动能的标志;
3)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快;
(4)分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小;
(5)气体膨胀,外界对气体做负功W<0;温度升高,内能增大ΔU>0;吸收热量,Q>0
(6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;
(7)r0为分子处于平衡状态时,分子间的距离;
(8)其它相关内容:能的转化和定恒定律〔见第二册P41〕/能源的开发与利用、环保〔见第二册P47〕/物体的内能、分子的动能、分子势能〔见第二册P47〕。
九、气体的性质
1.气体的状态参量:
温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志,
热力学温度与摄氏温度关系:T=t+273 {T:热力学温度(K),t:摄氏温度(℃)}
体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL
压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:1atm=1.013×105Pa=76Hg(1Pa=1N/m2)
2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大
3.理想气体的状态方程:p1V1/T1=p2V2/T2 {PV/T=恒量,T为热力学温度}
公式: F=PS 【S:受力面积,两物体接触的公共部分;单位:米2。】
1个标准大气压=76厘米水银柱高=1.01×105帕=10.336米水柱高
液面到液体某点的竖直高度。]
公式:P=ρgh h:单位:米; ρ:千克/米3; g=9.8牛/千克
2.阿基米德原理:浸在液体里的物体受到向上的浮力,浮力大小等于物体排开液体所受重力。
即F浮=G液排=ρ液gV排。 (V排表示物体排开液体的体积)
3.浮力计算公式:F浮=G-T=ρ液gV排=F上、下压力差
4.当物体漂浮时:F浮=G物 且 ρ物<ρ液 当物体悬浮时:F浮=G物 且 ρ物=ρ液
当物体上浮时:F浮>G物 且 ρ物<ρ液 当物体下沉时:F浮<G物 且 ρ物>ρ液
⒈杠杆平衡条件:F1l1=F2l2。力臂:从支点到力的作用线的垂直距离
通过调节杠杆两端螺母使杠杆处于水位置的目的:便于直接测定动力臂和阻力臂的长度。
定滑轮:相当于等臂杠杆,不能省力,但能改变用力的方向。
动滑轮:相当于动力臂是阻力臂2倍的杠杆,能省一半力,但不能改变用力方向。
⒉功:两个必要因素:①作用在物体上的力;②物体在力方向上通过距离。W=FS 功的单位:焦耳
3.功率:物体在单位时间里所做的功。表示物体做功的快慢的物理量,即功率大的物体做功快。
W=Pt P的单位:瓦特; W的单位:焦耳; t的单位:秒。
⒋凸透镜成像规律:
物距u 像距v 像的性质 光路图 应用
u>2f f<v<2f 倒缩小实 照相机
f<u<2f v>2f 倒放大实 幻灯机
u<f 放大正虚 放大镜
⒌凸透镜成像实验:将蜡烛、凸透镜、光屏依次放在光具座上,使烛焰中心、凸透镜中心、光屏中心在同一个高度上。
物理必考公式(课改区的)
速度:v=s/t
密度:ρ=m/v
重力:G=mg
压强:p=F/s(液体压强公式不直接考)
浮力:F浮=G排=ρ液gV排
漂浮悬浮时:F浮=G物
杠杆平衡条件:F1×L1=F2×L2
功:W=FS 或W=Gh(克服重力)
功率:P=W/t=Fv
机械效率:η=W有用/W总=Gh/Fs=G/Fn(n为滑轮组的股数)
热量:Q=cm△t
热值:Q=mq
欧姆定律:I=U/R
焦耳定律:Q=(I^2)Rt=[(U^2)/R]t=UIt=Pt(后三个公式适用于纯电阻电路)
电功:W=UIt=Pt=(I^2)Rt=[(U^2)/R]t(后2个公式适用于纯电阻电路)
电功率:P=UI=W/t=(I^2)R=(U^2)/R
V露÷V排=P液-P物÷P物
V露÷V物=P液-P物÷P液
V排=V物时,G÷F浮=P物÷P液
物理定理、定律、公式表
一、质点的运动(1)------直线运动
1)匀变速直线运动
1.平均速度V平=s/t(定义式)
2.有用推论Vt^2-Vo^2=2as
3.中间时刻速度Vt/2=V平=(Vt+Vo)/2
4.末速度Vt=Vo+at
5.中间位置速度Vs/2=[(Vo^2+Vt^2)/2]^(1/2)
6.位移s=V平t=Vot+(at^2)/2=Vt/2t
7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}
8.实验用推论Δs=aT^2 {Δs为连续相邻相等时间(T)内位移之差}
9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。
注:
(1)平均速度是矢量;
(2)物体速度大,加速度不一定大;
(3)a=(Vt-Vo)/t只是量度式,不是决定式;
(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。
2)自由落体运动
1.初速度Vo=0
2.末速度Vt=gt
3.下落高度h=gt2/2(从Vo位置向下计算)
4.推论Vt^2=2gh
注:
(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;
(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。
3)竖直上抛运动
1.位移s=Vot-(gt^2)/2
2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)
3.有用推论Vt2-Vo2=-2gs
4.上升最大高度Hmax=Vo^2/2g(抛出点算起)
5.往返时间t=2Vo/g (从抛出落回原位置的时间)
注:
(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;
(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;
(3)上升与下落过程具有对称性,如在同点速度等值反向等。
二、质点的运动(2)----曲线运动、万有引力
1)平抛运动
1.水平方向速度:Vx=Vo
2.竖直方向速度:Vy=gt
3.水平方向位移:x=Vot
4.竖直方向位移:y=gt^2/2
5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)
6.合速度Vt=根号(Vx^2+Vy^2)=根号[Vo^2+(gt)^2] (合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0 )
7.合位移:s=根号(x^2+y^2) (位移方向与水平夹角α:tgα=y/x=gt/2Vo )
8.水平方向加速度:ax=0;竖直方向加速度:ay=g
注:
(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;
(2)运动时间由下落高度h(y)决定与水平抛出速度无关;
(3)θ与β的关系为tgβ=2tgα;
(4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。
2)匀速圆周运动
1.线速度V=s/t=2πr/T
2.角速度ω=Φ/t=2π/T=2πf
3.向心加速度a=V2/r=ω2r=(2π/T)2r
4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合
5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr
7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)
8.主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。
注:
(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;
(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。
3)万有引力
1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}
2.万有引力定律:F=G(m1m2)/r^2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上)
3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}
4.卫星绕行速度、角速度、周期:V=根号(GM/r);ω=根号(GM/r3);T=根号((4π^2r^3)/GM){M:中心天体质量}
5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s
6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}
注:
(1)天体运动所需的向心力由万有引力提供,F向=F万;
(2)应用万有引力定律可估算天体的质量密度等;
(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;
(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);
(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。
三、力(常见的力、力的合成与分解)
1)常见的力
1.重力G=mg (方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)
2.胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}
3.滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}
4.静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力)
5.万有引力F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上)
6.静电力F=kQ1Q2/r2 (k=9.0×109N?m2/C2,方向在它们的连线上)
7.电场力F=Eq (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)
8.安培力F=BILsinθ (θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)
9.洛仑兹力f=qVBsinθ (θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)
注:
(1)劲度系数k由弹簧自身决定;
(2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定;
(3)fm略大于μFN,一般视为fm≈μFN;
(4)其它相关内容:静摩擦力(大小、方向)〔见第一册P7〕;
(5)物理量符号及单位B:磁感强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(m/s),q:带电粒子(带电体)电量(C);
(6)安培力与洛仑兹力方向均用左手定则判定。
2)力的合成与分解
1.同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)
2.互成角度力的合成:
F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2
3.合力大小范围:|F1-F2|≤F≤|F1+F2|
4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)
注:
(1)力(矢量)的合成与分解遵循平行四边形定则;
(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;
(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;
(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;
(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。
四、动力学(运动和力)
1.牛顿第一定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止
2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}
3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}
4.共点力的平衡F合=0,推广 {正交分解法、三力汇交原理}
5.超重:FN>G,失重:FN<G {加速度方向向下,均失重,加速度方向向上,均超重}
6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子〔见第一册P57〕
注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。
五、振动和波(机械振动与机械振动的传播)
1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}
2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}
3.受振动频率特点:f=f驱动力
4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕
5.机械波、横波、纵波〔见第二册P2〕
6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}
7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)
8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大
9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)
10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕}
注:
(1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;
(2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处;
(3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式;
(4)干涉与衍射是波特有的;
(5)振动图象与波动图象;
(6)其它相关内容:超声波及其应用〔见第二册P62〕/振动中的能量转化〔见第一册P63〕。
六、冲量与动量(物体的受力与动量的变化)
1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}
3.冲量:I=Ft {I:冲量(N?s),F:恒力(N),t:力的作用时间(s),方向由F决定}
4.动量定理:I=Δp或Ft=mvt–mvo {Δp:动量变化Δp=mvt–mvo,是矢量式}
5.动量守恒定律:p前总=p后总或p=p'′也可以是m1v1+m2v2=m1v1′+m2v2′
6.弹性碰撞:Δp=0;ΔEk=0 {即系统的动量和动能均守恒}
7.非弹性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:损失的动能,EKm:损失的最大动能}
8.完全非弹性碰撞Δp=0;ΔEK=ΔEKm {碰后连在一起成一整体}
9.物体m1以v1初速度与静止的物体m2发生弹性正碰:
v1′=(m1-m2)v1/(m1+m2) v2′=2m1v1/(m1+m2)
10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)
11.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失
E损=mvo2/2-(M+m)vt2/2=fs相对 {vt:共同速度,f:阻力,s相对子弹相对长木块的位移}
注:
(1)正碰又叫对心碰撞,速度方向在它们“中心”的连线上;
(2)以上表达式除动能外均为矢量运算,在一维情况下可取正方向化为代数运算;
(3)系统动量守恒的条件:合外力为零或系统不受外力,则系统动量守恒(碰撞问题、爆炸问题、反冲问题等);
(4)碰撞过程(时间极短,发生碰撞的物体构成的系统)视为动量守恒,原子核衰变时动量守恒;
(5)爆炸过程视为动量守恒,这时化学能转化为动能,动能增加;(6)其它相关内容:反冲运动、火箭、航天技术的发展和宇宙航行〔见第一册P128〕。
七、功和能(功是能量转化的量度)
1.功:W=Fscosα(定义式){W:功(J),F:恒力(N),s:位移(m),α:F、s间的夹角}
2.重力做功:Wab=mghab {m:物体的质量,g=9.8m/s2≈10m/s2,hab:a与b高度差(hab=ha-hb)}
3.电场力做功:Wab=qUab {q:电量(C),Uab:a与b之间电势差(V)即Uab=φa-φb}
4.电功:W=UIt(普适式) {U:电压(V),I:电流(A),t:通电时间(s)}
5.功率:P=W/t(定义式) {P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)}
6.汽车牵引力的功率:P=Fv;P平=Fv平 {P:瞬时功率,P平:平均功率}
7.汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmax=P额/f)
8.电功率:P=UI(普适式) {U:电路电压(V),I:电路电流(A)}
9.焦耳定律:Q=I2Rt {Q:电热(J),I:电流强度(A),R:电阻值(Ω),t:通电时间(s)}
10.纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt
11.动能:Ek=mv2/2 {Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)}
12.重力势能:EP=mgh {EP :重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)}
13.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)(从零势能面起)}
14.动能定理(对物体做正功,物体的动能增加):
W合=mvt2/2-mvo2/2或W合=ΔEK
{W合:外力对物体做的总功,ΔEK:动能变化ΔEK=(mvt2/2-mvo2/2)}
15.机械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2
16.重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=-ΔEP
注:
(1)功率大小表示做功快慢,做功多少表示能量转化多少;
(2)O0≤α<90O 做正功;90O<α≤180O做负功;α=90o不做功(力的方向与位移(速度)方向垂直时该力不做功);
(3)重力(弹力、电场力、分子力)做正功,则重力(弹性、电、分子)势能减少
(4)重力做功和电场力做功均与路径无关(见2、3两式);(5)机械能守恒成立条件:除重力(弹力)外其它力不做功,只是动能和势能之间的转化;(6)能的其它单位换算:1kWh(度)=3.6×106J,1eV=1.60×10-19J;*(7)弹簧弹性势能E=kx2/2,与劲度系数和形变量有关。
八、分子动理论、能量守恒定律
1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米
2.油膜法测分子直径d=V/s {V:单分子油膜的体积(m3),S:油膜表面积(m)2}
3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。
4.分子间的引力和斥力(1)r<r0,f引<f斥,F分子力表现为斥力
(2)r=r0,f引=f斥,F分子力=0,E分子势能=Emin(最小值)
(3)r>r0,f引>f斥,F分子力表现为引力
(4)r>10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0
5.热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的),
W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出〔见第二册P40〕}
6.热力学第二定律
克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性);
开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性){涉及到第二类永动机不可造出〔见第二册P44〕}
7.热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)}
注:
(1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈;
(2)温度是分子平均动能的标志;
3)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快;
(4)分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小;
(5)气体膨胀,外界对气体做负功W<0;温度升高,内能增大ΔU>0;吸收热量,Q>0
(6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;
(7)r0为分子处于平衡状态时,分子间的距离;
(8)其它相关内容:能的转化和定恒定律〔见第二册P41〕/能源的开发与利用、环保〔见第二册P47〕/物体的内能、分子的动能、分子势能〔见第二册P47〕。
九、气体的性质
1.气体的状态参量:
温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志,
热力学温度与摄氏温度关系:T=t+273 {T:热力学温度(K),t:摄氏温度(℃)}
体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL
压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:1atm=1.013×105Pa=76Hg(1Pa=1N/m2)
2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大
3.理想气体的状态方程:p1V1/T1=p2V2/T2 {PV/T=恒量,T为热力学温度}
公式: F=PS 【S:受力面积,两物体接触的公共部分;单位:米2。】
1个标准大气压=76厘米水银柱高=1.01×105帕=10.336米水柱高
液面到液体某点的竖直高度。]
公式:P=ρgh h:单位:米; ρ:千克/米3; g=9.8牛/千克
2.阿基米德原理:浸在液体里的物体受到向上的浮力,浮力大小等于物体排开液体所受重力。
即F浮=G液排=ρ液gV排。 (V排表示物体排开液体的体积)
3.浮力计算公式:F浮=G-T=ρ液gV排=F上、下压力差
4.当物体漂浮时:F浮=G物 且 ρ物<ρ液 当物体悬浮时:F浮=G物 且 ρ物=ρ液
当物体上浮时:F浮>G物 且 ρ物<ρ液 当物体下沉时:F浮<G物 且 ρ物>ρ液
⒈杠杆平衡条件:F1l1=F2l2。力臂:从支点到力的作用线的垂直距离
通过调节杠杆两端螺母使杠杆处于水位置的目的:便于直接测定动力臂和阻力臂的长度。
定滑轮:相当于等臂杠杆,不能省力,但能改变用力的方向。
动滑轮:相当于动力臂是阻力臂2倍的杠杆,能省一半力,但不能改变用力方向。
⒉功:两个必要因素:①作用在物体上的力;②物体在力方向上通过距离。W=FS 功的单位:焦耳
3.功率:物体在单位时间里所做的功。表示物体做功的快慢的物理量,即功率大的物体做功快。
W=Pt P的单位:瓦特; W的单位:焦耳; t的单位:秒。
⒋凸透镜成像规律:
物距u 像距v 像的性质 光路图 应用
u>2f f<v<2f 倒缩小实 照相机
f<u<2f v>2f 倒放大实 幻灯机
u<f 放大正虚 放大镜
⒌凸透镜成像实验:将蜡烛、凸透镜、光屏依次放在光具座上,使烛焰中心、凸透镜中心、光屏中心在同一个高度上。
物理必考公式(课改区的)
速度:v=s/t
密度:ρ=m/v
重力:G=mg
压强:p=F/s(液体压强公式不直接考)
浮力:F浮=G排=ρ液gV排
漂浮悬浮时:F浮=G物
杠杆平衡条件:F1×L1=F2×L2
功:W=FS 或W=Gh(克服重力)
功率:P=W/t=Fv
机械效率:η=W有用/W总=Gh/Fs=G/Fn(n为滑轮组的股数)
热量:Q=cm△t
热值:Q=mq
欧姆定律:I=U/R
焦耳定律:Q=(I^2)Rt=[(U^2)/R]t=UIt=Pt(后三个公式适用于纯电阻电路)
电功:W=UIt=Pt=(I^2)Rt=[(U^2)/R]t(后2个公式适用于纯电阻电路)
电功率:P=UI=W/t=(I^2)R=(U^2)/R
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
物理量(单位)物 理 公 式 导出公式或单位换算
电流 (安A)I=Q∕t,I=U∕R 1A=1C∕s = 1000mA
电压 (伏V)U = I R 1Kv=1000v=106mv
电阻 (欧Ω)R = U∕I R灯 = U 2∕P
电功 (焦J)定义式W=UIt W = P t W=UQ (∵Q=I t )
电功率(瓦W)定义式P=W∕t P = U I 1Kw=1000w
导体热量(J)焦耳定律Q=I 2 R t
面积 (m2)长方形S = a b 圆形S =πr 2 正方形S= a 2
体积 (m3)排液法V=V 2 –V 1 柱体V= s h 浸没时V排 =V物
速度 (m∕s) v = s∕t 1m∕s=3.6Km∕h
密度(Kg∕m3 ) ρ = m∕V 1g∕cm3=1000kg∕m3
重力 (牛N) G = m g
浮力 F浮 =ρ液g V排 称重F浮=G-F′ 沉底时F浮 = G-N
漂浮或悬浮F浮= G物 产生原因F浮= F向上-F向下
压强 (帕Pa) 定义式p = F∕S p液 = ρ g h 1Pa=1N∕m 2
机械功 定义式W=Fs 提升物体W=G h 1J=1N•m
机械功率 定义式P=W∕t 汽车功率P=Fv 1W=1J∕s
机械效率 定义式η=W有用∕W总 提升物体效率η= G h∕Fs
杠杆平衡条件 F1 L1 = F2 L2 F2∕F1=L1∕L2
力 同方向F合=F1+F2 反方向F合=F1-F2 液、气压力F= p S
机械能 机械能= 动能+势能
热量 燃料燃烧Q = q m 物体吸热或放热Q = c m Δt
串联电路中 电流I = I1 = I2 电压U =U 1 + U2 电阻R = R1 +R2
并联电路中 电流I = I1 + I2 电压U =U 1 = U2 R=R1R2∕(R1 +R2)
电流 (安A)I=Q∕t,I=U∕R 1A=1C∕s = 1000mA
电压 (伏V)U = I R 1Kv=1000v=106mv
电阻 (欧Ω)R = U∕I R灯 = U 2∕P
电功 (焦J)定义式W=UIt W = P t W=UQ (∵Q=I t )
电功率(瓦W)定义式P=W∕t P = U I 1Kw=1000w
导体热量(J)焦耳定律Q=I 2 R t
面积 (m2)长方形S = a b 圆形S =πr 2 正方形S= a 2
体积 (m3)排液法V=V 2 –V 1 柱体V= s h 浸没时V排 =V物
速度 (m∕s) v = s∕t 1m∕s=3.6Km∕h
密度(Kg∕m3 ) ρ = m∕V 1g∕cm3=1000kg∕m3
重力 (牛N) G = m g
浮力 F浮 =ρ液g V排 称重F浮=G-F′ 沉底时F浮 = G-N
漂浮或悬浮F浮= G物 产生原因F浮= F向上-F向下
压强 (帕Pa) 定义式p = F∕S p液 = ρ g h 1Pa=1N∕m 2
机械功 定义式W=Fs 提升物体W=G h 1J=1N•m
机械功率 定义式P=W∕t 汽车功率P=Fv 1W=1J∕s
机械效率 定义式η=W有用∕W总 提升物体效率η= G h∕Fs
杠杆平衡条件 F1 L1 = F2 L2 F2∕F1=L1∕L2
力 同方向F合=F1+F2 反方向F合=F1-F2 液、气压力F= p S
机械能 机械能= 动能+势能
热量 燃料燃烧Q = q m 物体吸热或放热Q = c m Δt
串联电路中 电流I = I1 = I2 电压U =U 1 + U2 电阻R = R1 +R2
并联电路中 电流I = I1 + I2 电压U =U 1 = U2 R=R1R2∕(R1 +R2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询