3个回答
2012-10-20
展开全部
对于f(x)=(ax+b)/(cx+d)这类函数或化为此类的,可用分离常数法求值域,
例如y=x/(2x+1)=(x+1/2-1/2)/2(x+1/2)=1/2-1/2(2x+1),
∵1/2(2x+10≠0,
∴函数的值域为{y/y≠1/2,y∈R},
例如y=(x^2-4x-5)/(x^2-3x-4)
=[(x-5)(x+1)]/[(x-4)(x+1)]
=(x-5)/(x-4)(x≠-1)
∴y=(x-5)/(x-4)=1-1/(x-4)(x≠-1且x≠4),
∴y≠1,且y≠6/5,y∈R,
实质就是y≠a/c,
例如y=x/(2x+1)=(x+1/2-1/2)/2(x+1/2)=1/2-1/2(2x+1),
∵1/2(2x+10≠0,
∴函数的值域为{y/y≠1/2,y∈R},
例如y=(x^2-4x-5)/(x^2-3x-4)
=[(x-5)(x+1)]/[(x-4)(x+1)]
=(x-5)/(x-4)(x≠-1)
∴y=(x-5)/(x-4)=1-1/(x-4)(x≠-1且x≠4),
∴y≠1,且y≠6/5,y∈R,
实质就是y≠a/c,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
分立常数,就是要在分子上也构造一个跟分母一样的因式。也就是要有个2x+5,但是分子的结构是1-x,分子不能改变,x的系数必须是-1,所以写成-0.5(2x+5)的形式保持x系数不变。常数项也要不变,1与-0.5×5的差是3.5所以
[-0.5(2x+5)+3.5]/2x+5
[-0.5(2x+5)+3.5]/2x+5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询