阶乘怎么算啊

 我来答
旅元斐肥庚
2019-08-03 · TA获得超过3.8万个赞
知道大有可为答主
回答量:1.4万
采纳率:29%
帮助的人:872万
展开全部
如果要精确计算阶乘,阶乘没有什么简便方法,只能一个一个的往下乘。
这也是为何要专门用一个!来表示阶乘。
如果只想计算大概的值,可以用“
斯特林公式”
(请自行百度)。
其实想想也很自然,
100!=1x2x3x...x10x11x12x...x20x21x...x99x100,
从10以后,每乘一次,这个数就至少增加一位,所以这个数就是写出来,也至少是100位左右的数字,假设有的话,这个公式该多复杂。
商贞026
2020-10-07 · TA获得超过214个赞
知道答主
回答量:270
采纳率:0%
帮助的人:7.1万
展开全部
在一起就好了?在家里面有人给你打电话了,你要我去哪里呀?在家里面没有任何的地方没有人能够理解我们的感情就会说
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
帐号已注销
2019-10-21 · TA获得超过1.6万个赞
知道答主
回答量:11.7万
采纳率:4%
帮助的人:6309万
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
13132112
推荐于2017-11-22 · TA获得超过4717个赞
知道小有建树答主
回答量:537
采纳率:0%
帮助的人:756万
展开全部
【阶乘的概念】
阶乘(factorial)是基斯顿·卡曼(Christian Kramp, 1760 – 1826)于1808年发明的运算符号。
阶乘,也是数学里的一种术语。
[编辑本段]【阶乘的计算方法】
阶乘指从1乘以2乘以3乘以4一直乘到所要求的数。
例如所要求的数是4,则阶乘式是1×2×3×4,得到的积是24,24就是4的阶乘。 例如所要求的数是6,则阶乘式是1×2×3×……×6,得到的积是720,720就是6的阶乘。例如所要求的数是n,则阶乘式是1×2×3×……×n,设得到的积是x,x就是n的阶乘。
[编辑本段]【阶乘的表示方法】
在表达阶乘时,就使用“!”来表示。如x的阶乘,就表示为x!
如:n!=n×(n-1)×(n-2)×(n-3)×...×1
阶乘的另一种表示方法:(2n-1)!!
当n=2时,3!!=3×1=3
当n=3时,5!!=5×3×1=15
当n=4时,7!!=7×5×3×1=105
...(以此类推)
[编辑本段]【20以内的数的阶乘】
以下列出0至20的阶乘:
0!=1,
1!=1,
2!=2,
3!=6,
4!=24,
5!=120,
6!=720,
7!=5040,
8!=40320
9!=362880
10!=3628800
11!=39916800
12!=479001600
13!=6227020800
14!=87178291200
15!=1307674368000
16!=20922789888000
17!=355687428096000
18!=6402373705728000
19!=121645100408832000
20!=2432902008176640000
另外,数学家定义,0!=1,所以0!=1!
[编辑本段]【阶乘的定义范围】
通常我们所说的阶乘是定义在自然数范围里的,小数没有阶乘,像0.5!,0.65!,0.777!都是错误的。但是,有时候我们会将Gamma函数定义为非整数的阶乘,因为当x是正整数n的时候,Gamma函数的值是n-1的阶乘。
¤伽玛函数(Gamma Function)
Γ(x)=∫e^(-t)*t^(x-1)dt (积分下限是零上限是+∞)(x<>0,-1,-2,-3,……)
运用积分的知识,我们可以证明Γ(x)=(x-1) * Γ(x-1)
所以,当x是整数n时,Γ(n) = (n-1)(n-2)……=(n-1)!
这样Gamma 函数实际上就把阶乘的延拓。
¤欧拉等式
x!=)=∫-(ln(x))^ndx (积分下限是零上限是+1)(x>0)
¤[计算机科学]
用Ruby求365的阶乘。
def AskFactorial(num) factorial=1;
1.step(num,1){|i| factorial*=i}
return factorial end factorial=AskFactorial(365)
puts factorial
¤【阶乘有关公式】
n!~sqrt(2*pi*n)(n/e)^n
该公式常用来计算与阶乘有关的各种极限。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 3条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式