如图,已知PB、PC分别是三角形ABC的外角平分线,且相交于点P,求证:P在∠A的平分线上

如上... 如上 展开
顺吾久
2009-09-16 · TA获得超过2.2万个赞
知道大有可为答主
回答量:2540
采纳率:0%
帮助的人:2238万
展开全部
设AP与BC相交于点Q
延长AB至D使得BD=BQ
延长AC至E使得CE=CQ
∵PB是ΔABC的外角平分线
∴∠PBD=∠PBQ
∵PB=PB(公共),BD=BQ(作图)
∴ΔPBD≌ΔPBQ
∴PD=PQ,∠PDB=∠PQB
同理,可得:PE=PQ,∠PEC=∠PQC
∵∠PQB与∠PQC互补
∴∠PDB与∠PEC互补
∴PD=PE,sin∠PDB=sin∠PEC

由正弦定理,可知:
在ΔPAD中,PA/sin∠PDB=PD/sin∠PAB
在ΔPAE中,PA/sin∠PEC=PE/sin∠PAC
∴sin∠PAB=sin∠PAC

∵∠BAC是ΔABC的内角,即∠BAC<180°
∴∠PAB+∠PAC≠180°
∴∠PAB=∠PAC,即PA是∠A的平分线
得证
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式