4个回答
2013-10-31
展开全部
这讲不清楚的呀,不过方法有很多的,你只能看书呀,你把问题发上来吧
基本数列是等差数列和等比数列
一、等差数列
一个等差数列由两个因素确定:首项a1和公差d.
得知以下任何一项,就可以确定一个等差数列(即求出数列的通项公式):
1、首项a1和公差d
2、数列前n项和s(n),因为s(1)=a1,s(n)-s(n-1)=a(n)
3、任意两项a(n)和a(m),n,m为已知数
等差数列的性质:
1、前N项和为N的二次函数(d不为0时)
2、a(m)-a(n)=(m-n)*d
3、正整数m、n、p为等差数列时,a(m)、a(n)、a(p)也是等差数列
例题1:已知a(5)=8,a(9)=16,求a(25)
解: a(9)-a(5)=4*d=16-8=8
a(25)-a(5)=20*d=5*4*d=40
a(25)=48
例题2:已知a(6)=13,a(9)=19,求a(12)
解:a(6)、a(9)、a(12)成等差数列
a(12)-a(9)=a(9)-a(6)
a(12)=2*a(9)-a(6)=25
二、等比数列
一个等比数列由两个因素确定:首项a1和公差d.
得知以下任何一项,就可以确定一个等比数列(即求出数列的通项公式):
1、首项a1和公比r
2、数列前n项和s(n),因为s(1)=a1,s(n)-s(n-1)=a(n)
3、任意两项a(n)和a(m),n,m为已知数
等比数列的性质:
1、a(m)/a(n)=r^(m-n)
2、正整数m、n、p为等差数列时,a(m)、a(n)、a(p)是等比数列
3、等比数列的连续m项和也是等比数列
即b(n)=a(n)+a(n+1)+...+a(n+m-1)构成的数列是等比数列。
三、数列的前N项和与逐项差
1、如果数列的通项公式是关于N的多项式,最高次数为P,则数列的前N项和是关于N的多项式,最高次数为P+1。
(这与积分很相似)
2、逐项差就是数列相邻两项的差组成的数列。
如果数列的通项公式是关于N的多项式,最高次数为P,则数列的逐项差的通项公式是关于N的多项式,最高次数为P-1。
(这与微分很相似)
例子:
1,16,81,256,625,1296 (a(n)=n^4)
15,65,175,369,671
50,110,194,302
60,84,108
24,24
从上例看出,四次数列经过四次逐项差后变成常数数列。
等比数列的逐项差还是等比数列
四、已知数列通项公式A(N),求数列的前N项和S(N)。
这个问题等价于求S(N)的通项公式,而S(N)=S(N-1)+A(N),这就成为递推数列的问题。
解法是寻找一个数列B(N),
使S(N)+B(N)=S(N-1)+B(N-1)
从而S(N)=A(1)+B(1)-B(N)
猜想B(N)的方法:把A(N)当作函数求积分,对得出的函数形式设待定系数,利用B(N)-B(N-1)=-A(N)求出待定系数。
例题1:求S(N)=2+2*2^2+3*2^3+...+N*2^N
解:S(N)=S(N-1)+N*2^N
N*2^N积分得(N*LN2-1)*2^N/(LN2)^2
因此设B(N)=(PN+Q)*2^N
则 (PN+Q)*2^N-[P(N-1)+Q)*2^(N-1)=-N*2^N
(P*N+P+Q)/2*2^N=-N*2^N
因为上式是恒等式,所以P=-2,Q=2
B(N)=(-2N+2)*2^N
A(1)=2,B(1)=0
因此:S(N)=A(1)+B(1)-B(N)
=(2N-2)*2^N+2
例题2:A(N)=N*(N+1)*(N+2),求S(N)
解法1:S(N)为N的四次多项式,
设:S(N)=A*N^4+B*N^3+C*N^2+D*N+E
利用S(N)-S(N-1)=N*(N+1)*(N+2)
解出A、B、C、D、E
解法2:
S(N)/3!=C(3,3)+C(4,3)+...C(N+2,3)
=C(N+3,4)
S(N)=N*(N+1)*(N+2)*(N+3)/4
基本数列是等差数列和等比数列
一、等差数列
一个等差数列由两个因素确定:首项a1和公差d.
得知以下任何一项,就可以确定一个等差数列(即求出数列的通项公式):
1、首项a1和公差d
2、数列前n项和s(n),因为s(1)=a1,s(n)-s(n-1)=a(n)
3、任意两项a(n)和a(m),n,m为已知数
等差数列的性质:
1、前N项和为N的二次函数(d不为0时)
2、a(m)-a(n)=(m-n)*d
3、正整数m、n、p为等差数列时,a(m)、a(n)、a(p)也是等差数列
例题1:已知a(5)=8,a(9)=16,求a(25)
解: a(9)-a(5)=4*d=16-8=8
a(25)-a(5)=20*d=5*4*d=40
a(25)=48
例题2:已知a(6)=13,a(9)=19,求a(12)
解:a(6)、a(9)、a(12)成等差数列
a(12)-a(9)=a(9)-a(6)
a(12)=2*a(9)-a(6)=25
二、等比数列
一个等比数列由两个因素确定:首项a1和公差d.
得知以下任何一项,就可以确定一个等比数列(即求出数列的通项公式):
1、首项a1和公比r
2、数列前n项和s(n),因为s(1)=a1,s(n)-s(n-1)=a(n)
3、任意两项a(n)和a(m),n,m为已知数
等比数列的性质:
1、a(m)/a(n)=r^(m-n)
2、正整数m、n、p为等差数列时,a(m)、a(n)、a(p)是等比数列
3、等比数列的连续m项和也是等比数列
即b(n)=a(n)+a(n+1)+...+a(n+m-1)构成的数列是等比数列。
三、数列的前N项和与逐项差
1、如果数列的通项公式是关于N的多项式,最高次数为P,则数列的前N项和是关于N的多项式,最高次数为P+1。
(这与积分很相似)
2、逐项差就是数列相邻两项的差组成的数列。
如果数列的通项公式是关于N的多项式,最高次数为P,则数列的逐项差的通项公式是关于N的多项式,最高次数为P-1。
(这与微分很相似)
例子:
1,16,81,256,625,1296 (a(n)=n^4)
15,65,175,369,671
50,110,194,302
60,84,108
24,24
从上例看出,四次数列经过四次逐项差后变成常数数列。
等比数列的逐项差还是等比数列
四、已知数列通项公式A(N),求数列的前N项和S(N)。
这个问题等价于求S(N)的通项公式,而S(N)=S(N-1)+A(N),这就成为递推数列的问题。
解法是寻找一个数列B(N),
使S(N)+B(N)=S(N-1)+B(N-1)
从而S(N)=A(1)+B(1)-B(N)
猜想B(N)的方法:把A(N)当作函数求积分,对得出的函数形式设待定系数,利用B(N)-B(N-1)=-A(N)求出待定系数。
例题1:求S(N)=2+2*2^2+3*2^3+...+N*2^N
解:S(N)=S(N-1)+N*2^N
N*2^N积分得(N*LN2-1)*2^N/(LN2)^2
因此设B(N)=(PN+Q)*2^N
则 (PN+Q)*2^N-[P(N-1)+Q)*2^(N-1)=-N*2^N
(P*N+P+Q)/2*2^N=-N*2^N
因为上式是恒等式,所以P=-2,Q=2
B(N)=(-2N+2)*2^N
A(1)=2,B(1)=0
因此:S(N)=A(1)+B(1)-B(N)
=(2N-2)*2^N+2
例题2:A(N)=N*(N+1)*(N+2),求S(N)
解法1:S(N)为N的四次多项式,
设:S(N)=A*N^4+B*N^3+C*N^2+D*N+E
利用S(N)-S(N-1)=N*(N+1)*(N+2)
解出A、B、C、D、E
解法2:
S(N)/3!=C(3,3)+C(4,3)+...C(N+2,3)
=C(N+3,4)
S(N)=N*(N+1)*(N+2)*(N+3)/4
展开全部
数列解题方法有:
1.判断和证明数列是等差(等比)数列常有三种方法:
(1)定义法:对于n≥2的任意自然数,验证 为同一常数。
(2)通项公式法:
①若 = +(n-1)d= +(n-k)d ,则 为等差数列;
②若 ,则 为等比数列。
(3)中项公式法:验证中项公式成立。
2. 在等差数列 中,有关 的最值问题——常用邻项变号法求解:
(1)当 >0,d<0时,满足 的项数m使得 取最大值.
(2)当 <0,d>0时,满足 的项数m使得取最小值。
在解含绝对值的数列最值问题时,注意转化思想的应用。
3.数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。
1.判断和证明数列是等差(等比)数列常有三种方法:
(1)定义法:对于n≥2的任意自然数,验证 为同一常数。
(2)通项公式法:
①若 = +(n-1)d= +(n-k)d ,则 为等差数列;
②若 ,则 为等比数列。
(3)中项公式法:验证中项公式成立。
2. 在等差数列 中,有关 的最值问题——常用邻项变号法求解:
(1)当 >0,d<0时,满足 的项数m使得 取最大值.
(2)当 <0,d>0时,满足 的项数m使得取最小值。
在解含绝对值的数列最值问题时,注意转化思想的应用。
3.数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-10-31
展开全部
以下纯属个人观点.如有雷同,不甚荣幸
1,数列其实就是找规律,看一个数列,首先要看到数列本身的变化规律,并将复杂数列通过,对个体的分解,或是对多项的合并,又或是通其他可行的方法,使原来的规律明显化或转化为简单规律,如等差等比这些有法可依的规律,最后通过学过知识解答.
2,对于那些等差等比数列,不要先考虑捷径,最实际的方法是通过现有的最基本的公式写出数列内部关系,一步步化简,一步步代入题目给出的条件,往往答案会自然而然的出来.
3,作为经历过高考的过来人,我觉得,数列往往会和那些指数对数的东东有点联系,题目往往有这样的倾向,所以对代数公式的熟记对解数列题还是小有帮助的.
4,差不多就这么点了,当然,最重要的一点,多做题,高考这种东西——无他,为手熟耳
1,数列其实就是找规律,看一个数列,首先要看到数列本身的变化规律,并将复杂数列通过,对个体的分解,或是对多项的合并,又或是通其他可行的方法,使原来的规律明显化或转化为简单规律,如等差等比这些有法可依的规律,最后通过学过知识解答.
2,对于那些等差等比数列,不要先考虑捷径,最实际的方法是通过现有的最基本的公式写出数列内部关系,一步步化简,一步步代入题目给出的条件,往往答案会自然而然的出来.
3,作为经历过高考的过来人,我觉得,数列往往会和那些指数对数的东东有点联系,题目往往有这样的倾向,所以对代数公式的熟记对解数列题还是小有帮助的.
4,差不多就这么点了,当然,最重要的一点,多做题,高考这种东西——无他,为手熟耳
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-10-31
展开全部
倒序求和法
错位相减法
……
错位相减法
……
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询