证明题:用解背包问题的贪心算法解0-1背包问题时不一定得到最优解 急求!! 50
1个回答
展开全部
贪心算法总是作出在当前看来是最好的选择,即贪心算法并不从整体最优解上加以考虑,它所作出的选择只是在某种意义上的局部最优解。
背包问题可以用贪心算法求解,而0-1背包问题却不能用贪心算法求解。
用贪心算法求解背包问题的步骤是,首先计算每种物品单位重量的价值vi/wi;然
后,依贪心选择策略,将尽可能多的单位重量价值最高的物品装入背包。若将这种物品全部装入背包后,背包内的物品总量未超过c,则选择单位重量价值次高的物
品并尽可能多地装入背包。依此策略一直进行下去,直到背包装满为止。
在最后一步包装不下时可能会分割物品,而0-1背包问题不能分割物品,故不一定得到最优解。
取一反例即可说明
背包问题可以用贪心算法求解,而0-1背包问题却不能用贪心算法求解。
用贪心算法求解背包问题的步骤是,首先计算每种物品单位重量的价值vi/wi;然
后,依贪心选择策略,将尽可能多的单位重量价值最高的物品装入背包。若将这种物品全部装入背包后,背包内的物品总量未超过c,则选择单位重量价值次高的物
品并尽可能多地装入背包。依此策略一直进行下去,直到背包装满为止。
在最后一步包装不下时可能会分割物品,而0-1背包问题不能分割物品,故不一定得到最优解。
取一反例即可说明
追问
谢谢您的回答!能否用标准证明格式来证明这个题目呢?
追答
证明的话 去图书馆找算法类书吧,书上都有。写不出来了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询