已知函数f(x)满足f(x)+1=1/f(x+1) ,当x∈[0,1] 时, f(x)=x;若在
已知函数f(x)满足f(x)+1=1/f(x+1),当x∈[0,1]时,f(x)=x;若在区间(-1,1]内g(x)=f(x)-mx-m有两个零点,求m的取值范围...
已知函数f(x)满足f(x)+1=1/f(x+1) ,当x∈[0,1] 时, f(x)=x;若在区间(-1,1] 内 g(x)=f(x)-mx-m有两个零点,求m的取值范围
展开
展开全部
当x∈[-1,0]时,x+1∈[0,1],即f(x+1)=x+1
∴f(x)=1/f(x+1) -1=1/(x+1) -1 ,x∈[-1,0)
∴g(x)={ 1/(x+1) -mx-m-1 x∈[-1,0 )
{ (1-m)x-m x∈[0,1]
①当x∈[0,1)时,要使g(x)有解
则必须有g(0)g(1)<0
即m(2m-1)<0
0<m<1/2
若m=0,g(x)=x,满足条件
若m=1/2,g(x)=x/2-1/2,∵x取不到1,∴g(x)<0,没有零点,舍。
∴0≤m<1/2
②当x∈(-1,0 )时,
g(x)=1/(x+1) -mx-m-1
x→0时,g(x)= -m
x→ -1时,g(x)=1/(1+x) -1→+∞
g‘(x)= -1/(x+1)² -m
若m>0,则g’(x)<0恒成立
考虑上述极限条件,x→ -1,g(x)→+∞,
x→0,g(x)= -m<0;
∴此时在(-1,0 )上必然有一个零点
若m=0,则g(x)=1/(x+1) -1>0,无零点,舍.
若m<0,令g‘(x)=0,考虑到x∈(-1,0 ),舍去一个增根后,得到x=1/√-m -1
x (-1,1/√-m -1) 1/√-m -1 (1/√-m -1,0)
g'(x) + 0 -
g(x) ↗ 极大值 ↘
由极限条件知,两端点处函数值均大于零,所以此时没有零点,舍.
∴m>0.
综上所述:0<m<1/2
请采纳答案,支持我一下。
∴f(x)=1/f(x+1) -1=1/(x+1) -1 ,x∈[-1,0)
∴g(x)={ 1/(x+1) -mx-m-1 x∈[-1,0 )
{ (1-m)x-m x∈[0,1]
①当x∈[0,1)时,要使g(x)有解
则必须有g(0)g(1)<0
即m(2m-1)<0
0<m<1/2
若m=0,g(x)=x,满足条件
若m=1/2,g(x)=x/2-1/2,∵x取不到1,∴g(x)<0,没有零点,舍。
∴0≤m<1/2
②当x∈(-1,0 )时,
g(x)=1/(x+1) -mx-m-1
x→0时,g(x)= -m
x→ -1时,g(x)=1/(1+x) -1→+∞
g‘(x)= -1/(x+1)² -m
若m>0,则g’(x)<0恒成立
考虑上述极限条件,x→ -1,g(x)→+∞,
x→0,g(x)= -m<0;
∴此时在(-1,0 )上必然有一个零点
若m=0,则g(x)=1/(x+1) -1>0,无零点,舍.
若m<0,令g‘(x)=0,考虑到x∈(-1,0 ),舍去一个增根后,得到x=1/√-m -1
x (-1,1/√-m -1) 1/√-m -1 (1/√-m -1,0)
g'(x) + 0 -
g(x) ↗ 极大值 ↘
由极限条件知,两端点处函数值均大于零,所以此时没有零点,舍.
∴m>0.
综上所述:0<m<1/2
请采纳答案,支持我一下。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
嗯。这个问题有点难。很复杂。建议你搜百度
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询