怎么解方程?方程为什么这么难解,一共需要几个步骤?

 我来答
流年易逝4
2014-07-29 · TA获得超过1293个赞
知道小有建树答主
回答量:1144
采纳率:100%
帮助的人:1153万
展开全部
方法
⒈估算法:刚学解方程时的入门方法。直接估计方程的解,然后代入原方程验证。
⒉应用等式的性质进行解方程。
⒊合并同类项:使方程变形为单项式
⒋移项:将含未知数的项移到左边,常数项移到右边
例如:3+x=18
解: x =18-3
x =15
⒌去括号:运用去括号法则,将方程中的括号去掉。
4x+2(79-x)=192 解: 4x+158-2x=192
4x-2x+158=192
2x+158=192
2x=192-158
x=17
6.公式法:有一些方程,已经研究出解的一般形式,成为固定的公式,可以直接利用公式。可解的多元高次的方程一般都有公式可循。
7.函数图像法:利用方程的解为两个以上关联函数图像的交点的几何意义求解。
方程是正向思维。
步骤
⑴有分母先去分母
⑵有括号就去括号
⑶需要移项就进行移项
⑷合并同类项
⑸系数化为1求得未知数的值
⑹ 开头要写“解”
例如:
3+x=18
解:
x =18-3
x =15
——————————
4x+2(79-x)=192
解:
4x+158-2x=192
4x-2x+158=192
2x+158=192
2x=192-158
2x=34
x=17
——————————
πr=6.28(只取π小数点后两位)
解这道题首先要知道π等于几,π=3.141592……,只取3.14,
解: 3.14r=6.28
r=6.28/3.14=2
不过,x不一定放在方程左边,或一个方程式子里有两个x,这样就要用数学中的简便计算方法去解决它了。有些式子右边有x,为了简便算,可以调换位置。

3一元二次方程编辑
解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。一元二次方程有四种解法: 1、直接开平方法;2、配方法;3、公式法;4、分解因式法。
⒈直接开平方法: 直接开平方法就是用直接开平方求解一元二次方程的方法。
用直接开平方法解形如(x-m)^2=n (n≥0)的 方程,其解为x=±√n+m .
例1.解方程⑴(x-2)^2 =9⑵9x^2-24x+16=11
分析:⑴此方程显然用直接开平方法好做,⑵方程左边是完全平方式(3x-4)^2,右边=11>0,所以此方程也可用直接开平方法解。
⑴解:(x-2)^2=9  ∴x-2=±√9  ∴x-2=±3  ∴x1=3+2 x2=-3+2  ∴x1=5 x2= -1
⑵解:9x^2;-24x+16=11  ∴(3x-4)^2=11  ∴3x-4=±√11  ∴x=﹙ 4±√11﹚/3  ∴原方程的解为x1=﹙4﹢√11﹚/3,x2= ﹙4﹣√11﹚/3
2.配方法:用配方法解方程ax^2+bx+c=0 (a≠0)
先将常数c移到方程右边:ax^2+bx=-c
将二次项系数化为1:x^2+(b/a)x = - c/a
方程两边分别加上一次项系数的一半的平方:x^2+b/ax+(b/2a)^2= - c/a+(b/2a)^2
方程左边成为一个完全平方式:(x+b/2a)^2 = -c/a﹢﹙b/2a)^2;
当b^2-4ac≥0时,x+b/2a =±√﹙﹣c/a﹚﹢﹙b/2a﹚^2;
∴x=﹛﹣b±[√﹙b^2;﹣4ac﹚]﹜/2a(这就是求根公式)
例2.用配方法解方程 3x^2-4x-2=0
解:将常数项移到方程右边 3x^2-4x=2
将二次项系数化为1:x^2-﹙4/3﹚x=
方程两边都加上一次项系数一半的平方:x^2-﹙4/3﹚x+(4/6)^2=? +(4/6)^2
配方:(x-4/6)^2= +(4/6)^2
直接开平方得:x-4/6=± √[? +(4/6)^2 ]
∴x= 4/6± √[? +(4/6)^2 ]
∴原方程的解为x?=4/6﹢√﹙10/6﹚,x?=4/6﹣√﹙10/6﹚ .
3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b^2-4ac的值,当b^2-4ac≥0时,把各项系数a,b,c的值代入求根公式x=[-b±√(b^2-4ac)]/(2a),(b^2-4ac≥0)就可得到方程的根。
例3.用公式法解方程 2x^2-8x=-5
解:将方程化为一般形式:2x^2-8x+5=0  ∴a=2,b=-8,c=5  b^2-4ac=(-8)^2-4×2×5=64-40=24>0  ∴x=[(-b±√(b^2-4ac)]/(2a)  ∴原方程的解为x?=,x?= .
4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。这种解一元二次方程的方法叫做因式分解法。
例4.用因式分解法解下列方程:
⑴ (x+3)(x-6)=-8 ⑵ 2x^2+3x=0  ⑶ 6x^2+5x-50=0 (选学) ⑷x2-2(+)x+4=0 (选学)
⑴解:(x+3)(x-6)=-8 化简整理得  x^2-3x-10=0 (方程左边为二次三项式,右边为零)  (x-5)(x+2)=0 (方程左边分解因式)  ∴x-5=0或x+2=0 (转化成两个一元一次方程)  ∴x^1=5,x^2=-2是原方程的解。
⑵解:2x^2+3x=0  x(2x+3)=0 (用提公因式法将方程左边分解因式)  ∴x=0或2x+3=0 (转化成两个一元一次方程)  ∴x1=0,x2=-是原方程的解。 注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解。
⑶解:6x^2+5x-50=0  (2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错)  ∴2x-5=0或3x+10=0  ∴x1=,x2=- 是原方程的解。
⑷解:x2-2(+)x+4 =0 (∵4 可分解为2 ·2 ,∴此题可用因式分解法)  (x-2)(x-2)=0  ∴x1=2,x2=2是原方程的解。
小结: 一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般形式,同时应使二次项系数化为正数。
直接开平方法是最基本的方法。
公式法和配方法是最重要的方法。公式法适用于任何一元二次方程(有人称之为万能法),在使用公式法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算判别式的值,以便判断方程是否有解。
配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法解一元二次方程。
但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的三种重要的数学方法之一,一定要掌握好。(三种重要的数学方法:元法,配方法,待定系数法)。

若满意请采纳!!谢谢
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式