求解要过程!!!!!

formeforyouok
2014-06-07 · TA获得超过3234个赞
知道小有建树答主
回答量:1154
采纳率:100%
帮助的人:1015万
展开全部

解:(1)证明:把△ACD绕点A顺时针旋转90°得到△ABE,连接ED
则有△ACD≌△ABE,
DC=EB
∵AD=AE,∠DAE=90°
∴△ADE是等腰直角三角形
∴DE=√2AD
在△DBE中,BD+EB>DE,
即:BD+DC>√2AD;

(2)把△ABD旋转,使AB与AC重合,然后绕AC旋转,得到△ACD′,
则BD=CD′,
在△CDD′中,CD+CD′>DD′,
即BD+CD>DD′,
∵△ADD′是钝角三角形,则DD′>√2AD
当D运动到B的位置时,DD′=BC=√2AD.
∴BD+DC≥√2AD;

(3)猜想1:BD+DC<2AD
证明:把△ACD绕点A顺时针旋转α,得到△ABE则有△ACD≌△ABE,DC=EB,∠ACD=∠ABE
∵∠BAC+∠BDC=180°
∴∠ABD+∠ACD=180°
∴∠ABD+∠ABE=180°
即:E、B、D三点共线.
∵AD=AE,
∴在△ADE中,AE+AD>ED,即BD+DC<2AD.

追答
亲,如果满意请点击右上方评价【满意】即可,你的采纳是我前进的动力,答题不易,祝你开心,嘻嘻
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式