有界数列是否一定收敛

教育小百科达人
2020-11-04 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:468万
展开全部

有界数列不一定收敛,比如数列{b(n)},b(n)=(-1)^n,|b(n)|<=1 {b(n)}有界,b(n)为摆动数列,但是不收敛。

数列中的每一项均不超过一个固定的区间,其中分上界和下界。假设存在定值a,任意n有{An(n为下角标)=B,称数列{An}有下界B,如果同时存在A、B使得数列{An}的值在区间[A,B]内,数列有界。



扩展资料:

收敛数列与其子数列间的关系,子数列也是收敛数列且极限为a恒有|Xn|<M,若已知一个子数列发散,或有两个子数列收敛于不同的极限值,可断定原数列是发散的。如果数列{xn}收敛于a,那么它的任一子数列也收敛于a。

如果数列{Xn}收敛,那么该数列必定有界。推论:无界数列必定发散;数列有界,不一定收敛;数列发散不一定无界。

北京埃德思远电气技术咨询有限公司
2023-07-25 广告
潮流计算是一种用于分析和计算电力系统中有功功率、无功功率、电压和电流分布的经典方法。它是在给定电力系统网络拓扑、元件参数和发电、负荷参量条件下,计算电力系统中各节点的有功功率、无功功率、电压和电流的实际运行情况。潮流计算主要用于研究电力系统... 点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
爱迪奥特曼_开
推荐于2017-11-26 · TA获得超过1829个赞
知道小有建树答主
回答量:766
采纳率:80%
帮助的人:354万
展开全部
有界数列不一定收敛;举例如下
数列{a(n)},a(n)=1/n,|a(n)|<=1
{a(n)}有界,且a(n)收敛到0;
数列{b(n)},b(n)=(-1)^n,|b(n)|<=1
{b(n)}有界,b(n)为摆动数列,不收敛。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
叶老师云课堂
2020-10-29 · TA获得超过380个赞
知道答主
回答量:160
采纳率:0%
帮助的人:8.1万
展开全部

本视频是高等数学系列教学视频之一,该系列教学视频是系统的教学视频,有助于非数学专业学生更好地学习高等数学及考研。每周周二四六更新。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式