求详细解答十字相乘法怎么运用
2个回答
展开全部
十字分解法的方法简单来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。其实就是运用乘法公式(x+a)(x+b)=x²+(a+b)x+ab的逆运算来进行因式分解。
十字分解法能把二次三项式分解因式(不一定在整数范围内)。对于形如ax²+bx+c=(a1x+c1)(a2x+c2)的整式来说,方法的关键是把二次项系数a分解成两个因数a1,a2的积a1·a2,把常数项c分解成两个因数c1,c2的积c1·c2,并使a1c2+a2c1正好等于一次项的系数b,那么可以直接写成结果:ax²+bx+c=(a1x+c1)(a2x+c2)。在运用这种方法分解因式时,要注意观察,尝试,并体会,它的实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。基本式子:x²+(p+q)x+pq=(x+p)(x+q)。
http://baike.baidu.com/link?url=iRNxhOowjXNo0WsdQeL0atghIUqZzcYKbkBYLURwm9ZuxsVH17gqI8dsMDNwufrNqUvl6FAdpkdKqK7Cw55gIq
十字分解法能把二次三项式分解因式(不一定在整数范围内)。对于形如ax²+bx+c=(a1x+c1)(a2x+c2)的整式来说,方法的关键是把二次项系数a分解成两个因数a1,a2的积a1·a2,把常数项c分解成两个因数c1,c2的积c1·c2,并使a1c2+a2c1正好等于一次项的系数b,那么可以直接写成结果:ax²+bx+c=(a1x+c1)(a2x+c2)。在运用这种方法分解因式时,要注意观察,尝试,并体会,它的实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。基本式子:x²+(p+q)x+pq=(x+p)(x+q)。
http://baike.baidu.com/link?url=iRNxhOowjXNo0WsdQeL0atghIUqZzcYKbkBYLURwm9ZuxsVH17gqI8dsMDNwufrNqUvl6FAdpkdKqK7Cw55gIq
北京埃德思远电气技术咨询有限公司
2023-07-25 广告
2023-07-25 广告
整定计算是继电保护中的一项重要工作,旨在通过分析计算和整定,确定保护配置方式和整定值,以满足电力系统安全稳定运行的要求。在进行整定计算时,需要考虑到电力系统的各种因素,如电压等级、线路长度、变压器容量、负载情况等等,以及各种保护设备的特性、...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |