求学霸解答,,,最后有过程,,thank you!
2014-12-15
展开全部
(7) 解; 由题意可得任意两边之和大于第三边,任意两边之差小于第三边,
∴有 m+m+1>m+2,∴m>1.再由m+1<m+m+2可得 m<3.
综上,1<m<3,
故选B.
∴有 m+m+1>m+2,∴m>1.再由m+1<m+m+2可得 m<3.
综上,1<m<3,
故选B.
更多追问追答
追答
(8) 先设出原来的三边为a、b、c且c2=a2+b2,以及增加同样的长度为x,得到新的三角形的三边为a+x、b+x、c+x,知c+x为最大边,所以所对的角最大,然后根据余弦定理判断出余弦值为正数,所以最大角为锐角,得到三角形为锐角三角形.
解:设增加同样的长度为x,原三边长为a、b、c,且c2=a2+b2,c为最大边;
新的三角形的三边长为a+x、b+x、c+x,知c+x为最大边,其对应角最大.
而(a+x)2+(b+x)2-(c+x)2=x2+2(a+b-c)x>0,
由余弦定理知新的三角形的最大角的余弦= >0,则为锐角,
那么它为锐角三角形.
故选A
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询