如图,⊙O的弦AD∥BC,过点D的切线交BC的延长线于点E,AC∥DE交BD于点H,DO及延长线分别交AC、BC于点G、F

如图,⊙O的弦AD∥BC,过点D的切线交BC的延长线于点E,AC∥DE交BD于点H,DO及延长线分别交AC、BC于点G、F.(1)求证:DF垂直平分AC;(2)求证:FC... 如图,⊙O的弦AD∥BC,过点D的切线交BC的延长线于点E,AC∥DE交BD于点H,DO及延长线分别交AC、BC于点G、F.(1)求证:DF垂直平分AC;(2)求证:FC=CE;(3)若弦AD=5㎝,AC=8㎝,求⊙O的半径. 展开
 我来答
度晗昱87
推荐于2016-07-24 · 超过67用户采纳过TA的回答
知道答主
回答量:126
采纳率:88%
帮助的人:63.5万
展开全部
解:(1)∵DE是⊙O的切线,且DF过圆心O
∴DF⊥DE
又∵AC∥DE
∴DF⊥AC
∴DF垂直平分AC    
(2)由(1)知:AG=GC
又∵AD∥BC
∴∠DAG=∠FCG
又∵∠AGD=∠CGF
∴△AGD≌△CGF(ASA)
∴AD=FC    
∵AD∥BC且AC∥DE
∴四边形ACED是平行四边形
∴AD=CE  
∴FC=CE   
(3)连结AO;

∵AG=GC,AC=8cm,∴AG=4cm
在Rt△AGD中,由勾股定理得 GD=
设圆的半径为r,则AO=r,OG=r-3
在Rt△AOG中,由勾股定理得 AO 2 =OG 2 +AG 2
有:r 2 =(r-3) 2 +4 2 解得 r=  
∴⊙O的半径为 cm.

(1)由DE是⊙O的切线,且DF过圆心O,可得DF⊥DE,又由AC∥DE,则DF⊥AC,进而可知DF垂直平分AC;
(2)可先证△AGD≌△CGF,四边形ACED是平行四边形,即可证明FC=CE;
(3)连接AO可先求得AG=4cm,在Rt△AGD中,由勾股定理得GD=3cm;设圆的半径为r,则AO=r,OG=r-3,在Rt△AOG中,由勾股定理可求得r=  
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式