已知函数f(x)=x2+ax+b.(1)若对任意的实数x,都有f(x)≥2x+a,求b的取值范围;(2)当x∈[-1,1]时

已知函数f(x)=x2+ax+b.(1)若对任意的实数x,都有f(x)≥2x+a,求b的取值范围;(2)当x∈[-1,1]时,f(x)的最大值为M,求证:M≥b+1;(3... 已知函数f(x)=x2+ax+b.(1)若对任意的实数x,都有f(x)≥2x+a,求b的取值范围;(2)当x∈[-1,1]时,f(x)的最大值为M,求证:M≥b+1;(3)若a∈(0,12),求证:对于任意的x∈[-1,1],|f(x)|≤1的充要条件是a24?1≤b≤?a. 展开
 我来答
梦殇天堂101
2014-10-29 · TA获得超过104个赞
知道答主
回答量:110
采纳率:50%
帮助的人:108万
展开全部
(1)对任意的实数x,都有f(x)≥2x+a,即不等式f(x)-2x-a≥0对?x∈R恒成立,
记F(x)=x2+(a-2)x+b-a,则F(x)的最小值为F(
2?a
2
)=-
1
4
(a-2)2+b-a≥0,
即b≥1+
1
4
a2≥1,所以b的取值范围是[1,+∞)
(2)∵x∈[-1,1]时,f(x)的最大值为M,
∴f(-1)≤M且f(1)≤M,即
1?a+b≤M
1+a+b≤M
,两式相加得2+2b≤2M
所以不等式M≥b+1成立;
(3)∵0<a<
1
2
,∴-
1
4
<-
a
2
<0,函数f(x)=x2+ax+b的图象的对称轴x=-
a
2
∈[-1,1],
∴函数在[-1,-
a
2
)上是减函数,在(-
a
2
,1]上是增函数
因此函数f(x)=x2+ax+b的最小值为f(-
a
2
)=b-
1
4
a2,最大值为f(1)=1+a+b
而不等式|f(x)|≤1即-1≤f(x)≤1,它的充要条件是1+a+b≤1且-1≤b-
1
4
a2
解之得
1
4
a2-1≤b≤-a,命题得证.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式