![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
(2011?河南)如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,∠C=60°,BC=2AD=23,点E是BC边的中点,△D
(2011?河南)如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,∠C=60°,BC=2AD=23,点E是BC边的中点,△DEF是等边三角形,DF交AB于点G,...
(2011?河南)如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,∠C=60°,BC=2AD=23,点E是BC边的中点,△DEF是等边三角形,DF交AB于点G,则△BFG的周长为______.
展开
1个回答
展开全部
已知AD∥BC,∠ABC=90°,点E是BC边的中点,即AD=BE=CE=
,
∴四边形ABED为矩形,
∴∠DEC=90°,∠A=90°,
又∠C=60°,
∴DE=CE?tan60°=
×
=3,
又∵△DEF是等边三角形,
∴DF=DE=AB=3,∠AGD=∠EDF=60°,∠ADG=30°
∴AG=AD?tan30°=
×
=1,
∴DG=2,FG=DF-DG=1,
BG=3-1=2,
∴AG=FG=1,∠AGD=∠FGB,BG=DG=2,
∴△AGD≌△BGF,
∴BF=AD=
,
∴△BFG的周长为2+1+
=3+
,
故答案为:3+
3 |
∴四边形ABED为矩形,
∴∠DEC=90°,∠A=90°,
又∠C=60°,
∴DE=CE?tan60°=
3 |
3 |
又∵△DEF是等边三角形,
∴DF=DE=AB=3,∠AGD=∠EDF=60°,∠ADG=30°
∴AG=AD?tan30°=
3 |
| ||
3 |
∴DG=2,FG=DF-DG=1,
BG=3-1=2,
∴AG=FG=1,∠AGD=∠FGB,BG=DG=2,
∴△AGD≌△BGF,
∴BF=AD=
3 |
∴△BFG的周长为2+1+
3 |
3 |
故答案为:3+
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:
下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载