在平面直角坐标系xOy中,二次函数y1=mx2+(m-3)x-3(m>0)的图象与x轴交于A、B两点(点A在点B的左侧)

在平面直角坐标系xOy中,二次函数y1=mx2+(m-3)x-3(m>0)的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)求点A的坐标;(2)当∠A... 在平面直角坐标系xOy中,二次函数y1=mx2+(m-3)x-3(m>0)的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)求点A的坐标;(2)当∠ABC=45°时,求m的值;(3)已知一次函数y2=kx+b,点P(n,0)是x轴上的一个动点,在(2)的条件下,过点P垂直于x轴的直线交这个一次函数的图象于点M,交二次函数y=mx2+(m-3)x-3(m>0)的图象于N.若只有当-2<n<2时,点M位于点N的上方,求这个一次函数的解析式. 展开
 我来答
豪豪d6hL
2014-12-19 · TA获得超过159个赞
知道答主
回答量:170
采纳率:0%
帮助的人:150万
展开全部
(1)∵点A、B是二次函数y=mx2+(m-3)x-3(m>0)的图象与x轴的交点,
∴令y=0,即mx2+(m-3)x-3=0
整理,得
(x+1)(mx-3)=0
解得x1=-1,x2
3
m

又∵点A在点B左侧且m>0
∴点A的坐标为(-1,0)

(2)由(1)可知点B的坐标为(
3
m
,0)

∵二次函数的图象与y轴交于点C
∴点C的坐标为(0,-3)
∵∠ABC=45°
∴OB=
3
m
=3

∴m=1

(3)由(2)得,二次函数解析式为y1=x2-2x-3,
∵只有当-2<n<2时,点M位于点N的上方,
∴当-2<n<2时,y1<y2
即一次函数的图象与二次函数的图象交点的横坐标分别为-2和2,
由此可得交点坐标为(-2,5)和(2,-3),
将交点坐标分别代入一次函数解析式y=kx+b中,
?2k+b=5
2k+b=?3
,解得:
k=?2
b=1

∴一次函数解析式为y=-2x+1.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式