如图,在平行四边形ABCD中,E是AD的中点,CE交BA的延长线于点F.(1)求证:CD=AF;(2)若BC=2CD,求证
如图,在平行四边形ABCD中,E是AD的中点,CE交BA的延长线于点F.(1)求证:CD=AF;(2)若BC=2CD,求证:BE平分∠CBF....
如图,在平行四边形ABCD中,E是AD的中点,CE交BA的延长线于点F.(1)求证:CD=AF;(2)若BC=2CD,求证:BE平分∠CBF.
展开
展开全部
(1)证明:∵四边形ABCD是平行四边形,
∴CD∥BA,CD=BA,
∴∠D=∠EAF,
∵E为AD中点,
∴DE=AE.
∵在△CDE和△FAE中
,
∴△CDE≌△FAE(ASA),
∴CD=FA.
(2)证明:由(1)得△CDE≌△FAE,
∴CE=FE,
即E为FC的中点,
由(1)得CD=BA,CD=FA,
∴BF=2CD,
又∵BC=2CD,
∴BF=BC,
即△BFC为等腰三角形,
∴BE平分∠CBF(三线合一).
∴CD∥BA,CD=BA,
∴∠D=∠EAF,
∵E为AD中点,
∴DE=AE.
∵在△CDE和△FAE中
|
∴△CDE≌△FAE(ASA),
∴CD=FA.
(2)证明:由(1)得△CDE≌△FAE,
∴CE=FE,
即E为FC的中点,
由(1)得CD=BA,CD=FA,
∴BF=2CD,
又∵BC=2CD,
∴BF=BC,
即△BFC为等腰三角形,
∴BE平分∠CBF(三线合一).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询