
如图,已知△ABC是等腰直角三角形,AB=AC,AD是斜边的中线,E、F分别是AB、AC边上的点,且DE⊥DF,若BE=8
如图,已知△ABC是等腰直角三角形,AB=AC,AD是斜边的中线,E、F分别是AB、AC边上的点,且DE⊥DF,若BE=8,CF=6.(1)求证:△AED≌△CFD;(2...
如图,已知△ABC是等腰直角三角形,AB=AC,AD是斜边的中线,E、F分别是AB、AC边上的点,且DE⊥DF,若BE=8,CF=6.(1)求证:△AED≌△CFD;(2)求△DEF的面积.
展开
展开全部
解答:(1)证明:∵在Rt△ABC中,AB=AC,AD为BC边的中线,
∴∠DAC=∠BAD=∠C=45°,AD⊥BC,AD=DC,
又∵DE⊥DF,AD⊥DC,
∴∠EDA+∠ADF=∠CDF+∠FDA=90°,
∴∠EDA=∠CDF
在△AED与△CFD中,
,
∴△AED≌△CFD(ASA).
(2)解:由(1)知:AE=CF=6,同理AF=BE=8.
∵∠EAF=90°,
∴EF2=AE2+AF2=62+82=100.
∴EF=10,
又∵由(1)知:△AED≌△CFD,
∴DE=DF,
∴△DEF为等腰直角三角形,DE2+DF2=EF2=100,
∴DE=DF=5
,
∴S△DEF=
×(5
)2=25.
∴∠DAC=∠BAD=∠C=45°,AD⊥BC,AD=DC,
又∵DE⊥DF,AD⊥DC,
∴∠EDA+∠ADF=∠CDF+∠FDA=90°,
∴∠EDA=∠CDF
在△AED与△CFD中,
|
∴△AED≌△CFD(ASA).
(2)解:由(1)知:AE=CF=6,同理AF=BE=8.
∵∠EAF=90°,
∴EF2=AE2+AF2=62+82=100.
∴EF=10,
又∵由(1)知:△AED≌△CFD,
∴DE=DF,
∴△DEF为等腰直角三角形,DE2+DF2=EF2=100,
∴DE=DF=5
2 |
∴S△DEF=
1 |
2 |
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询