某公司生产一种产品的固定成本为0.5万元,但每生产100件需再增加成本0.25万元,市场对此产品的年需求量为
某公司生产一种产品的固定成本为0.5万元,但每生产100件需再增加成本0.25万元,市场对此产品的年需求量为500件,年销售收入(单位:万元)为R(t)=5t-t22(0...
某公司生产一种产品的固定成本为0.5万元,但每生产100件需再增加成本0.25万元,市场对此产品的年需求量为500件,年销售收入(单位:万元)为R(t)=5t-t22(0≤t≤5),其中t为产品售出的数量(单位:百件).(1)把年利润表示为年产量x(百件)(x≥0)的函数f(x);(2)当年产量为多少件时,公司可获得最大年利润?
展开
1个回答
展开全部
(1)当0≤x≤5时,f(x)=R(x)-0.5-0.25x
=-
x2+4.75x-0.5;当x>5时,
f(x)=R(5)-0.5-0.25x=12-0.25x,
故所求函数解析式为f(x)=
.
(2)0≤x≤5时,f(x)=-
(x-4.75)2+10.78125,
∴在x=4.75时,
f(x)有最大值10.78125,当x>5时,
f(x)=12-0.25x<12-0.25×5
=10.75<10.78125,
综上所述,当x=4.75时,f(x)有最大值,即当年产量为475件时,公司可获得最大年利润.
=-
1 |
2 |
f(x)=R(5)-0.5-0.25x=12-0.25x,
故所求函数解析式为f(x)=
|
(2)0≤x≤5时,f(x)=-
1 |
2 |
∴在x=4.75时,
f(x)有最大值10.78125,当x>5时,
f(x)=12-0.25x<12-0.25×5
=10.75<10.78125,
综上所述,当x=4.75时,f(x)有最大值,即当年产量为475件时,公司可获得最大年利润.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询