如图,△ABC中,AD是角平分线,E、F分别为AC、AB上的点,且∠AED+∠AFD=180°.试问:DE与DF有何关系,并

如图,△ABC中,AD是角平分线,E、F分别为AC、AB上的点,且∠AED+∠AFD=180°.试问:DE与DF有何关系,并说明理由.... 如图,△ABC中,AD是角平分线,E、F分别为AC、AB上的点,且∠AED+∠AFD=180°.试问:DE与DF有何关系,并说明理由. 展开
 我来答
大苏zU
推荐于2016-06-08 · TA获得超过180个赞
知道小有建树答主
回答量:129
采纳率:33%
帮助的人:64万
展开全部
DE=DF,
理由是:
过D作DM⊥AB于M,DN⊥AC于N,
∵AD平分∠BAC,
∴DM=DN,∠FMD=∠END=90°,
∵∠AED+∠AFD=180°,∠AED+∠DEN=180°,
∴∠MFD=∠DEN,
在△FMD和△END中
∠MFD=∠DEN
∠FMD=∠END
DM=DN

∴△FMD≌△END,
∴DE=DF.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式