问题:已知一组平行直线a∥b∥c,求作等边三角形ABC,使点A、B、C分别在直线a,b,c上.小明同学作法如下
问题:已知一组平行直线a∥b∥c,求作等边三角形ABC,使点A、B、C分别在直线a,b,c上.小明同学作法如下:如图,过点A作AM⊥b于M,作∠MAN=60°,且AN=A...
问题:已知一组平行直线a∥b∥c,求作等边三角形ABC,使点A、B、C分别在直线a,b,c上.小明同学作法如下:如图,过点A作AM⊥b于M,作∠MAN=60°,且AN=AM,过点N作CN⊥AN交直线c于点C,在直线b上取点B使BM=CN,则△ABC为所求.(1)请证明小明的作法是正确的.(2)请你参考小明的作法,在图2中画出顶角为30°的等腰三角形DEF,使点D、E、F顺次在直线a,b,c,上,且∠EDF为顶角;(3)在图1中,若直线a,b之间的距离为1,直线b,c之间的距离为2,计算AC的长度.
展开
展开全部
解答:证明:(1)∵AM⊥b于M,CN⊥AN,
∴∠AMB=∠ANC=90°,
∵AN=AM,BM=CN,
在△AMB和△ANC中,
,
∴△AMB≌△ANC(SAS),
∴AB=AC,∠CAN=∠BAM
∵∠MAN=60°,
∴∠BAC=∠MAN=60°,
∴△ABC是等边三角形,
(2)如图2,过点D作DM⊥b于M,作∠MAN=30°,且DN=DM,过点N作FN⊥DN交直线c于点F,在直线b上取点E使EM=FN,则△DEF为所求.
(3如图1,过点N作HG⊥a于H,交c于点G,
∴∠AHN=∠NGC=90°.
∵∠MAN=60°,
∴∠HAN=30°,
∴HN=
AN,∠ANH=60°,
∵AM=AN=1,
∴HN=0.5.
∴HG=2.5.
∵CN⊥AN,
∴∠ANC=90°,
∴∠ANH+∠CNG=90°,
∴∠CNG=30°,
∴CN=2CG,
在Rt△CGN中,由勾股定理,得
4CG2-CG2=
,
CG=
,
∴CN=
,
在Rt△ANC中,由勾股定理,得
AC2=(
)2+1,
AC=
.
∴∠AMB=∠ANC=90°,
∵AN=AM,BM=CN,
在△AMB和△ANC中,
|
∴△AMB≌△ANC(SAS),
∴AB=AC,∠CAN=∠BAM
∵∠MAN=60°,
∴∠BAC=∠MAN=60°,
∴△ABC是等边三角形,
(2)如图2,过点D作DM⊥b于M,作∠MAN=30°,且DN=DM,过点N作FN⊥DN交直线c于点F,在直线b上取点E使EM=FN,则△DEF为所求.
(3如图1,过点N作HG⊥a于H,交c于点G,
∴∠AHN=∠NGC=90°.
∵∠MAN=60°,
∴∠HAN=30°,
∴HN=
1 |
2 |
∵AM=AN=1,
∴HN=0.5.
∴HG=2.5.
∵CN⊥AN,
∴∠ANC=90°,
∴∠ANH+∠CNG=90°,
∴∠CNG=30°,
∴CN=2CG,
在Rt△CGN中,由勾股定理,得
4CG2-CG2=
25 |
4 |
CG=
5
| ||
6 |
∴CN=
5
| ||
3 |
在Rt△ANC中,由勾股定理,得
AC2=(
5
| ||
3 |
AC=
2
| ||
3 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询