学霸帮帮忙,要过程,谢谢了!!
2014-11-06
展开全部
解:
(1)∵对称轴为直线x=-1的抛物线y=ax^2+bx+c(a≠0)与x轴相交于A、B两点,∴A、B两点关于直线x=-1对称,∵点A的坐标为(-3,0)∴点B的坐标为(1,0)(2)①a=1时,∵抛物线y=x2+bx+c的对称轴为直线x=-1,
对称轴x=-b/(2a)=-1
解得b=2.将B(1,0)代入y=x^2+2x+c,得1+2+c=0,解得c=-3.则二次函数的解析式为y=x^2+2x-3,∴抛物线与y轴的交点C的坐标为(0,-3),OC=3.设P点坐标为(x,x^2+2x-3),∵S△POC=4S△BOC,
1/2*|x|*3=4*1/2*1*3
∴|x|=4,x=±4.当x=4时,x^2+2x-3=16+8-3=21;当x=-4时,x^2+2x-3=16-8-3=5.所以点P的坐标为(4,21)或(-4,5);②设直线AC的解析式为y=kx+t,将A(-3,0),C(0,-3)代入,
得
−3k+t=0
t=−3
解得
k=−1
t=−3
即直线AC的解析式为y=-x-3.
延长AD交y轴于E
设Q点坐标为(x,-x-3)(-3≤x≤0),则D点坐标为(x,x^2+2x-3),
E(0,3(x-1))
△ACD的面积=△ACE面积-△DCE面积
=1/2*3*(3(1-x)-3)-1/2*(-x)*(3(1-x)-3)
=-3/2x^2-9/2x
对称轴x=-3/2时有最大值,满足-3≤x≤0
∴Q=(-3/2,-3/2)
(1)∵对称轴为直线x=-1的抛物线y=ax^2+bx+c(a≠0)与x轴相交于A、B两点,∴A、B两点关于直线x=-1对称,∵点A的坐标为(-3,0)∴点B的坐标为(1,0)(2)①a=1时,∵抛物线y=x2+bx+c的对称轴为直线x=-1,
对称轴x=-b/(2a)=-1
解得b=2.将B(1,0)代入y=x^2+2x+c,得1+2+c=0,解得c=-3.则二次函数的解析式为y=x^2+2x-3,∴抛物线与y轴的交点C的坐标为(0,-3),OC=3.设P点坐标为(x,x^2+2x-3),∵S△POC=4S△BOC,
1/2*|x|*3=4*1/2*1*3
∴|x|=4,x=±4.当x=4时,x^2+2x-3=16+8-3=21;当x=-4时,x^2+2x-3=16-8-3=5.所以点P的坐标为(4,21)或(-4,5);②设直线AC的解析式为y=kx+t,将A(-3,0),C(0,-3)代入,
得
−3k+t=0
t=−3
解得
k=−1
t=−3
即直线AC的解析式为y=-x-3.
延长AD交y轴于E
设Q点坐标为(x,-x-3)(-3≤x≤0),则D点坐标为(x,x^2+2x-3),
E(0,3(x-1))
△ACD的面积=△ACE面积-△DCE面积
=1/2*3*(3(1-x)-3)-1/2*(-x)*(3(1-x)-3)
=-3/2x^2-9/2x
对称轴x=-3/2时有最大值,满足-3≤x≤0
∴Q=(-3/2,-3/2)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询