已知函数f(x)=-x2+ax+b2-b+1(a∈R,b∈R),对任意实数x都有f(1-x)=f(1+x)成立,若当x∈[-1,1]时

已知函数f(x)=-x2+ax+b2-b+1(a∈R,b∈R),对任意实数x都有f(1-x)=f(1+x)成立,若当x∈[-1,1]时,f(x)>0恒成立,则b的取值范围... 已知函数f(x)=-x2+ax+b2-b+1(a∈R,b∈R),对任意实数x都有f(1-x)=f(1+x)成立,若当x∈[-1,1]时,f(x)>0恒成立,则b的取值范围是______. 展开
 我来答
贲哲vR
推荐于2016-12-01 · TA获得超过255个赞
知道答主
回答量:97
采纳率:0%
帮助的人:59.9万
展开全部
∵对任意实数x都有f(1-x)=f(1+x)成立
∴函数f(x)的对称轴为x=1=
a
2
,解得a=2
∵函数f(x)的对称轴为x=1,开口向下
∴函数f(x)在[-1,1]上是单调递增函数,
而f(x)>0恒成立,f(x)min=f(-1)=b2-b-2>0
解得b<-1或b>2,
故答案为b<-1或b>2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式