如图,直三棱柱ABC-A1B1C1中,AC=BC=AA1=2,∠ACB=90°,E为BB1中点,∠A1DE=90°.(I)求证:CD⊥平面A
如图,直三棱柱ABC-A1B1C1中,AC=BC=AA1=2,∠ACB=90°,E为BB1中点,∠A1DE=90°.(I)求证:CD⊥平面A1ABB1;(II)求二面角C...
如图,直三棱柱ABC-A1B1C1中,AC=BC=AA1=2,∠ACB=90°,E为BB1中点,∠A1DE=90°.(I)求证:CD⊥平面A1ABB1;(II)求二面角C-A1E-D的大小.
展开
1个回答
展开全部
解答:(I)证明:连接AE.在△ABC中,用勾股定理,求出AB=2
在△A1B1E中,用勾股定理,求出AE=3.
在△AA1D中,有:A1D2=AA12+AD2
在△BDE中,有:DE2=BE2+BD2
在△A1DE中,有AE2=A1D2+DE2=(AA12+AD2)+(BE2+BD2)
AB=AD+BD(与上式联立,解方程组)
可以求出:AD=BD=
.即D点是AB的中点,CD是等腰RT△ABC的斜边AB上的中线,
也就是斜边上的高(CD⊥AB).
又在直三菱柱ABC-A1B1C1中,有AA1⊥底面ABC,又CD∈面ABC,则AA1⊥CD.
综合上述条件,CD⊥AB,CD⊥AA1,且AA1∩AB=A.,有CD⊥面A1ABB1
(II)过D作DH⊥A1E于H,AC=BC=AA1=2,A1E=3,DE=
,A1D=
,DH=
=
所以,二面角C-A1E-D的正切值为:
=1,二面角C-A1E-D的大小为45°
2 |
在△A1B1E中,用勾股定理,求出AE=3.
在△AA1D中,有:A1D2=AA12+AD2
在△BDE中,有:DE2=BE2+BD2
在△A1DE中,有AE2=A1D2+DE2=(AA12+AD2)+(BE2+BD2)
AB=AD+BD(与上式联立,解方程组)
可以求出:AD=BD=
2 |
也就是斜边上的高(CD⊥AB).
又在直三菱柱ABC-A1B1C1中,有AA1⊥底面ABC,又CD∈面ABC,则AA1⊥CD.
综合上述条件,CD⊥AB,CD⊥AA1,且AA1∩AB=A.,有CD⊥面A1ABB1
(II)过D作DH⊥A1E于H,AC=BC=AA1=2,A1E=3,DE=
3 |
6 |
| ||||
3 |
2 |
所以,二面角C-A1E-D的正切值为:
| ||
|
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询