如图,过抛物线y2=2px(p>0)的焦点F且倾斜角为60°的直线l交抛物线于A、B两点,若|AF|=3,则此抛物线方
如图,过抛物线y2=2px(p>0)的焦点F且倾斜角为60°的直线l交抛物线于A、B两点,若|AF|=3,则此抛物线方程为()A.y2=3xB.y2=6xC.y2=32x...
如图,过抛物线y2=2px(p>0)的焦点F且倾斜角为60°的直线l交抛物线于A、B两点,若|AF|=3,则此抛物线方程为( )A.y2=3xB.y2=6xC.y2=32xD.y2=2x
展开
展开全部
过点A,B向准线x=-
作垂线,垂足分别为C,D,过B点向AC作垂线,垂足为E
∵A,B两点在抛物线y=2px上,∴|AC|=|AF|,|BD|=|BF|
∵BE⊥AC,∴|AE|=|AF|-|BF|,
∵直线AB的倾斜角为60°,∴在Rt△ABE中,2|AE|=|AB|=|AF|+|BF|
即2(|AF|-|BF)=|AF|+|BF|,∴|AF|=3|BF|
∵|AF|=3,∴|BF|=1,∴|AB|=|AF|+|BF|=4
设直线AB方程为y=
(x-
),代入y2=2px,得,
3x2-5px+
=0,
∴x1+x2=
∴|AB|=x1+x2+
=
+
=4
∴P=
,∴抛物线方程为y2=3x
故选A
p |
2 |
∵A,B两点在抛物线y=2px上,∴|AC|=|AF|,|BD|=|BF|
∵BE⊥AC,∴|AE|=|AF|-|BF|,
∵直线AB的倾斜角为60°,∴在Rt△ABE中,2|AE|=|AB|=|AF|+|BF|
即2(|AF|-|BF)=|AF|+|BF|,∴|AF|=3|BF|
∵|AF|=3,∴|BF|=1,∴|AB|=|AF|+|BF|=4
设直线AB方程为y=
3 |
p |
2 |
3x2-5px+
p2 |
4 |
∴x1+x2=
5p |
3 |
∴|AB|=x1+x2+
P |
2 |
5p |
3 |
P |
2 |
∴P=
3 |
2 |
故选A
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询