完全平方差和平方差公式的变形大全:一一列出,并写出详细过程,谢谢!
5个回答
展开全部
完全平方
(a-b)²=a²-2ab+b² (a+b)²=a²+2ab+b²
平方差:(a+b)(a-b)=a²-b²
(a-b)²=a²-2ab+b² (a+b)²=a²+2ab+b²
平方差:(a+b)(a-b)=a²-b²
追问
例如:完全平方公式的常见变形: 2a+2b=(a+b)²-2ab
(a-b)²+2ab=(a+b)²+(a-b)²
2(2a+2b)= (a+b)²-(a-b)2=4ab
.
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(a+b)²=a²+2ab+b² (a-b)²=a²-2ab+b²
a²-b²=(a+b)(a-b)
反过来也成立
a²-b²=(a+b)(a-b)
反过来也成立
追问
例如:完全平方公式的常见变形: 2a+2b=(a+b)²-2ab
(a-b)²+2ab=(a+b)²+(a-b)²
2(2a+2b)= (a+b)²-(a-b)2=4ab
.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
更多追问追答
追答
(a+b)2=a2+2ab+b2
(a+b)(a-b)=a2-b2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
平方差公式:(a+b)(a-b)=a²-b²
两数和与这两数差的积,等于它们的平方差。
平方差的推导:(a+b)(a-b)=a²-ab+ab-b²=a²-b²
应用中常见的几种变形
①位置变化:(-b+a)(b+a)=a²-b²
②符号变化:(-a+b)(-a-b)=a²-b²
③系数变化:(2a+3b)(2a-3b)=(2a)²-(3b)²=4a²-9b²
④指数变化:(a²+b²)(a²-b²)=(a²)²-(b²)²=a的四次方-b的四次方
⑤增项变化:(a+b+c)(a+b-c)=(a²+b²)-c²=a²+2ab+b²-c²
两数和与这两数差的积,等于它们的平方差。
平方差的推导:(a+b)(a-b)=a²-ab+ab-b²=a²-b²
应用中常见的几种变形
①位置变化:(-b+a)(b+a)=a²-b²
②符号变化:(-a+b)(-a-b)=a²-b²
③系数变化:(2a+3b)(2a-3b)=(2a)²-(3b)²=4a²-9b²
④指数变化:(a²+b²)(a²-b²)=(a²)²-(b²)²=a的四次方-b的四次方
⑤增项变化:(a+b+c)(a+b-c)=(a²+b²)-c²=a²+2ab+b²-c²
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询