分式化简
1个回答
展开全部
(1)
1/(√3+√2)+1/(√2+1)-1/(√3+1)
=(√3-√2)/(√3+√2)(√3-√2)+(√2-1)/(√2+1)(√2-1)-(√3-1)/(√3+1)(√3-1)
=(√3-√2)+(√2-1)-(√3-1)/2
=(√3-1)/2
(2)
[√(x+1)-√x]/[√(x+1)+√x]+[√(x-1)+√x]/[√(x-1)-√x]
=[√(x+1)-√x]^2/[√(x+1)+√x][√(x+1)-√x]+[√(x-1)+√x]^2/[√(x-1)-√x][√(x-1)+√x]
=[√(x+1)-√x]^2-[√(x-1)+√x]^2
=[x+1-2√(x+1)√x+x]-[x-1+2√(x-1)√x+x]
=2-2√x(x+1)-2√x(x-1)
1/(√3+√2)+1/(√2+1)-1/(√3+1)
=(√3-√2)/(√3+√2)(√3-√2)+(√2-1)/(√2+1)(√2-1)-(√3-1)/(√3+1)(√3-1)
=(√3-√2)+(√2-1)-(√3-1)/2
=(√3-1)/2
(2)
[√(x+1)-√x]/[√(x+1)+√x]+[√(x-1)+√x]/[√(x-1)-√x]
=[√(x+1)-√x]^2/[√(x+1)+√x][√(x+1)-√x]+[√(x-1)+√x]^2/[√(x-1)-√x][√(x-1)+√x]
=[√(x+1)-√x]^2-[√(x-1)+√x]^2
=[x+1-2√(x+1)√x+x]-[x-1+2√(x-1)√x+x]
=2-2√x(x+1)-2√x(x-1)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询