用分部积分法计算下列定积分
1个回答
展开全部
1、原式=-∫(0,1) xd[e^(-x)]
=-[xe^(-x)|(0,1)-∫(0,1)e^(-x)dx]
=-[1/e+e^(-x)|(0,1)]
=-[1/e+1/e-1]
=1-2/e
2、原式=(1/2)*∫(1,e) lnx[d(x^2)]
=(1/2)*[lnx*x^2|(1,e)-∫(1,e) xdx]
=(1/2)*[e^2-(x^2/2)|(1,e)]
=(1/2)*[e^2-e^2/2+1/2]
=(1/4)*(e^2+1)
=-[xe^(-x)|(0,1)-∫(0,1)e^(-x)dx]
=-[1/e+e^(-x)|(0,1)]
=-[1/e+1/e-1]
=1-2/e
2、原式=(1/2)*∫(1,e) lnx[d(x^2)]
=(1/2)*[lnx*x^2|(1,e)-∫(1,e) xdx]
=(1/2)*[e^2-(x^2/2)|(1,e)]
=(1/2)*[e^2-e^2/2+1/2]
=(1/4)*(e^2+1)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询