向量的向量空间
研究向量空间一般会涉及一些额外结构。额外结构如下:
一个实数或复数向量空间加上长度概念。就是范数称为赋范向量空间。
一个实数或复数向量空间加上长度和角度的概念,称为内积空间。
一个向量空间加上拓扑学符合运算的(加法及标量乘法是连续映射)称为拓扑向量空间。
一个向量空间加上双线性算子(定义为向量乘法)是个域代数。 一个向量空间V的一个非空子集合W在加法及标量乘法中表现密闭性,被称为V的线性子空间。给出一个向量集合B,那么包含它的最小子空间就称为它的扩张,记作span(B)。给出一个向量集合B,若它的扩张就是向量空间V, 则称B为V的生成集。一个向量空间V最大的线性独立子集,称为这个空间的基。若V=0,唯一的基是空集。对非零向量空间 V,基是 V 最小的生成集。如果一个向量空间 V 拥有一个元素个数有限的生成集,那么就称V是一个有限维空间。向量空间的所有基拥有相同基数,称为该空间的维度。例如,实数向量空间:R0,R1,R2,R3。。。,R∞,。。。中,Rn 的维度就是n。空间内的每个向量都有唯一的方法表达成基中元素的线性组合。把基中元素排列,向量便可以坐标系统来呈现。
向量的中线公式
若P为线段AB的中点,O为平面内一点,则OP=1/2(OA+OB)