软件性能的软件性能的指标
响应时间是指系统对请求作出响应的时间。直观上看,这个指标与人对软件性能的主观感受是非常一致的,因为它完整地记录了整个计算机系统处理请求的时间。由于一个系统通常会提供许多功能,而不同功能的处理逻辑也千差万别,因而不同功能的响应时间也不尽相同,甚至同一功能在不同输入数据的情况下响应时间也不相同。所以,在讨论一个系统的响应时间时,人们通常是指该系统所有功能的平均时间或者所有功能的最大响应时间。当然,往往也需要对每个或每组功能讨论其平均响应时间和最大响应时间。
对于单机的没有并发操作的应用系统而言,人们普遍认为响应时间是一个合理且准确的性能指标。需要指出的是,响应时间的绝对值并不能直接反映软件的性能的高低,软件性能的高低实际上取决于用户对该响应时间的接受程度。对于一个游戏软件来说,响应时间小于100毫秒应该是不错的,响应时间在1秒左右可能属于勉强可以接受,如果响应时间达到3秒就完全难以接受了。而对于编译系统来说,完整编译一个较大规模软件的源代码可能需要几十分钟甚至更长时间,但这些响应时间对于用户来说都是可以接受的。 虽然软件性能指标本身只涉及软件性能的度量,但考虑到软件性能测试的主要目的是测试和改善所开发软件的性能,对于复杂的网络化的软件而言,简单地用响应时间进行度量就不一定合适了。
考虑一个普通的网站系统。开发该网站系统时,软件开发实际上只集中在服务器端,因为客户端的软件是标准的浏览器。虽然用户看到的响应时间时使用特定客户端计算机上的特定浏览器浏览该网站的响应时间,但是在讨论软件性能时更关心所开发网站软件本身的“响应时间”。也就是说,可以把用户感受到的响应时间划分为“呈现时间”和“系统响应时间”,前者是指客户端的浏览器在接收到网站数据时呈现页面所需的时间,而后者是指客户端接收到用户请求到客户端接收到服务器发来的数据所需的时间。显然,软件性能测试更关心“系统响应时间”,因为“呈现时间”与客户端计算机和浏览器有关,而与所开发的网站软件没有太大的关系。
如果仔细分析这个例子,还可以把“系统响应时间”进一步分解为“网络传输时间”和“应用延迟时间”,其中前者是指数据(包括请求数据和响应数据)在客户端和服务器端进行传输的时间,而后者是指网站软件实际处理请求所需的时间。类似的,软件性能测试也更关心“应用延迟时间”。实际上,这种分解还可以继续下去,如果该网站系统使用了数据库,我们可以把“数据库延迟时间”分离出来,如果该网站系统使用了中间件,还可以把“中间件延迟时间”也分离出来。
以上的时间分解实际上有两方面的目的。首先,人们通常希望把与所开发软件直接相关的延迟时间和与所开发软件不相关的延迟时间分离开,因为改善前者往往需要开发人员修改程序代码,而改善后者不需要开发人员修改代码,很多时候,开发人员对后者甚至是无能为力的。其次,详细的分解有助于开发人员分析哪些部分是影响软件性能的主要因素,以便于实时性能改善方案。 吞吐量是指系统在单位时间内处理请求的数量。对于无并发的应用系统而言,吞吐量与响应时间成严格的反比关系,实际上此时吞吐量就是响应时间的倒数。前面已经说过,对于单用户的系统,响应时间(或者系统响应时间和应用延迟时间)可以很好地度量系统的性能,但对于并发系统,通常需要用吞吐量作为性能指标。
对于一个多用户的系统,如果只有一个用户使用时系统的平均响应时间是t,当有你n个用户使用时,每个用户看到的响应时间通常并不是n×t,而往往比n×t小很多(当然,在某些特殊情况下也可能比n×t大,甚至大很多)。这是因为处理每个请求需要用到很多资源,由于每个请求的处理过程中有许多步骤难以并发执行,这导致在具体的一个时间点,所占资源往往并不多。也就是说在处理单个请求时,在每个时间点都可能有许多资源被闲置,当处理多个请求时,如果资源配置合理,每个用户看到的平均响应时间并不随用户数的增加而线性增加。实际上,不同系统的平均响应时间随用户数增加而增长的速度也不大相同,这也是采用吞吐量来度量并发系统的性能的主要原因。一般而言,吞吐量是一个比较通用的指标,两个具有不同用户数和用户使用模式的系统,如果其最大吞吐量基本一致,则可以判断两个系统的处理能力基本一致。 开发人员的视角与管理员的视角基本一致,但开发人员需要更深入地关注软件性能。在开发过程中,开发人员希望能够尽可能地开发出高性能的软件。
2024-11-19 广告
广告 您可能关注的内容 |