用极坐标表示的复数怎么进行加减乘除运算
4个回答
展开全部
复数可以分为实部和虚部,记为a+ib,在直角坐标系中,横轴代表实数,纵轴代表虚数,以A(a,b)代表实数A=a+ib,在极坐标系中,以原点作为始点,A(a,b)作为终点的矢量代表该虚数,用A(r,θ)表示,其中r=(a平方+b平方)的开二次方,θ = arctg(b/a)。
1.极坐标:在平面内取一个定点O, 叫极点,引一条射线Ox,叫做极轴,再选定一个长度单位和角度的正方向(通常取逆时针方向)。对于平面内任何一点M,用ρ表示线段OM的长度,θ表示从Ox到OM的角度,ρ叫做点M的极径,θ叫做点M的极角,有序数对 (ρ,θ)就叫点M的极坐标,这样建立的坐标即为极坐标。
2.复数:复数x被定义为二元有序实数对(a,b) ,记为z=a+bi,这里a和b是实数,i是虚数单位。在复数a+bi中,a=Re(z)称为实部,b=Im(z)称为虚部。当虚部等于零时,这个复数可以视为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。复数域是实数域的代数闭包,也即任何复系数多项式在复数域中总有根。 复数是由意大利米兰学者卡当在十六世纪首次引入,经过达朗贝尔、棣莫弗、欧拉、高斯等人的工作,此概念逐渐为数学家所接受。
2016-05-27
展开全部
复数分为实部和虚部,记为a+ib,在直角坐标系中,横轴代表实数,纵轴代表虚数,以A(a,b)代表实数A=a+ib,在极坐标系中,以原点作为始点,A(a,b)作为终点的矢量代表该虚数,用A(r,θ)表示,其中r=(a平方+b平方)的开二次方,θ = arctg(b/a)。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
加减法需要把极坐标形式化成代数形式计算,以后把结果再化成极坐标形式。
乘除需要模模相乘除,复角相加减
乘除需要模模相乘除,复角相加减
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2016-05-28
展开全部
义乌
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询