求定积分【0,nπ】∫√1+sin2xdx

 我来答
教育小百科达人
2019-04-01 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:475万
展开全部

∫ (π→0) √(1+sin 2x ) dx

=-∫ (0→π) √(1+sin 2x ) dx

=-∫ (0→π) √(sin²x+cos²x+2sinxcosx) dx

=-∫ (0→π) √(sinx+cosx)² dx

=-∫ (0→π) |sinx+cosx| dx

在(0→3π/4)内sinx+cosx>0,在(3π/4→π)内,sinx+cosx

一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。

扩展资料:

含有a+bx的积分公式主要有以下几类:

f(x)积分的结果有无数个,是不确定的。我们一律用F(x)+C代替,这就称为不定积分。即如果一个导数有原函数,那么它就有无限多个原函数。

设λ=max{△x1, △x2, …, △xn}(即λ是最大的区间长度),如果当λ→0时,积分和的极限存在,则这个极限叫做函数f(x) 在区间[a,b]的定积分。

参考资料来源:百度百科——定积分

茹翊神谕者

2021-01-29 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1621万
展开全部

可以使用书上的结论,答案如图所示

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
bill8341
高粉答主

2016-12-12 · 关注我不会让你失望
知道大有可为答主
回答量:1.8万
采纳率:95%
帮助的人:3663万
展开全部
∫(0->π)√(1+sin2x)dx
=∫(0->π)√(sin^2x+2sinxcosx+cos^2x)dx
=∫(0->π)|sinx+cosx|dx
=∫(0->3π/4) (sinx+cosx)dx +∫(3π/4->π) -(sinx+cosx)dx
=∫(0->3π/4)sinxdx+∫(0->3π/4)cosxdx-∫(3π/4->π)sinxdx-∫(3π/4->π)cosxdx
=-cosx|(0->3π/4)+sinx|(0->3π/4)+cosx|(3π/4->π)-sinx|(3π/4->π)
=-(-√2/2-1)+(√2/2-0) +(-1-(-√2/2))-(0-√2/2)
=√2/2+1+√2/2 -1+√2/2+√2/2
=2√2
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
拉斯为家事
2018-01-13 · TA获得超过178个赞
知道答主
回答量:27
采纳率:0%
帮助的人:2.8万
展开全部
解答少了个n
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式