求定积分【0,nπ】∫√1+sin2xdx
展开全部
∫ (π→0) √(1+sin 2x ) dx
=-∫ (0→π) √(1+sin 2x ) dx
=-∫ (0→π) √(sin²x+cos²x+2sinxcosx) dx
=-∫ (0→π) √(sinx+cosx)² dx
=-∫ (0→π) |sinx+cosx| dx
在(0→3π/4)内sinx+cosx>0,在(3π/4→π)内,sinx+cosx
一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。
扩展资料:
含有a+bx的积分公式主要有以下几类:
f(x)积分的结果有无数个,是不确定的。我们一律用F(x)+C代替,这就称为不定积分。即如果一个导数有原函数,那么它就有无限多个原函数。
设λ=max{△x1, △x2, …, △xn}(即λ是最大的区间长度),如果当λ→0时,积分和的极限存在,则这个极限叫做函数f(x) 在区间[a,b]的定积分。
参考资料来源:百度百科——定积分
展开全部
∫(0->π)√(1+sin2x)dx
=∫(0->π)√(sin^2x+2sinxcosx+cos^2x)dx
=∫(0->π)|sinx+cosx|dx
=∫(0->3π/4) (sinx+cosx)dx +∫(3π/4->π) -(sinx+cosx)dx
=∫(0->3π/4)sinxdx+∫(0->3π/4)cosxdx-∫(3π/4->π)sinxdx-∫(3π/4->π)cosxdx
=-cosx|(0->3π/4)+sinx|(0->3π/4)+cosx|(3π/4->π)-sinx|(3π/4->π)
=-(-√2/2-1)+(√2/2-0) +(-1-(-√2/2))-(0-√2/2)
=√2/2+1+√2/2 -1+√2/2+√2/2
=2√2
=∫(0->π)√(sin^2x+2sinxcosx+cos^2x)dx
=∫(0->π)|sinx+cosx|dx
=∫(0->3π/4) (sinx+cosx)dx +∫(3π/4->π) -(sinx+cosx)dx
=∫(0->3π/4)sinxdx+∫(0->3π/4)cosxdx-∫(3π/4->π)sinxdx-∫(3π/4->π)cosxdx
=-cosx|(0->3π/4)+sinx|(0->3π/4)+cosx|(3π/4->π)-sinx|(3π/4->π)
=-(-√2/2-1)+(√2/2-0) +(-1-(-√2/2))-(0-√2/2)
=√2/2+1+√2/2 -1+√2/2+√2/2
=2√2
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解答少了个n
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |