将函数f(x)=1/2(π-x)展开为正弦级数
3个回答
2017-09-08
展开全部
先看展成正弦级数,先把f(x)延拓到区间(1,2],使得f(x)=2-x,x∈(1,2]
再把f(x)奇性延拓到区间[-2,0)上,使得f(x)=-f(-x),x∈[-2,0)
最后再把f(x)以周期为4延拓到整个实轴上去,令x=2t/π,记g(t)=f(x)=f(2t/π)
则g(t)是周期为2π的奇函数,所以an=0
bn=(∫(-π,π)g(t)sin(nt)dt)/π=(2/π)(∫(0,π)g(t)sin(nt)dt
=[8sin(nπ/2)]/(nπ)²,n=1,2,3.
即g(t)=∑bn(sin(nt))=>f(x)=g(t)=∑bn(sin(nt))=∑bn(sin(nπx/2)),x∈[0,1]
再看展成余弦级数,先把f(x)偶性延拓到区间[-1,0)上,使得f(x)=f(-x),x∈[-1,0)
最后再把f(x)以周期为2延拓到整个实轴上去,令x=t/π,记g(t)=f(x)=f(t/π)
则g(t)是周期为2π的偶函数,所以bn=0
an=(∫(-π,π)g(t)cos(nt)dt)/π=(2/π)(∫(0,π)g(t)cos(nt)dt
=2[(-1)^n-1]/(nπ)²,n=1,2,3.而a0=(2/π)(∫(0,π)g(t)cos(nt)dt=1
即g(t)=a0/2+∑an(cos(nt))=>f(x)=g(t)=1/2+∑an(cos(nt))=1/2+∑an(cos(nπx))
=1/2-4∑(cos(2n-1)πx)/[(2n-1)π]²,x∈[0,1]
以上∑都是n从1到∞求和
再把f(x)奇性延拓到区间[-2,0)上,使得f(x)=-f(-x),x∈[-2,0)
最后再把f(x)以周期为4延拓到整个实轴上去,令x=2t/π,记g(t)=f(x)=f(2t/π)
则g(t)是周期为2π的奇函数,所以an=0
bn=(∫(-π,π)g(t)sin(nt)dt)/π=(2/π)(∫(0,π)g(t)sin(nt)dt
=[8sin(nπ/2)]/(nπ)²,n=1,2,3.
即g(t)=∑bn(sin(nt))=>f(x)=g(t)=∑bn(sin(nt))=∑bn(sin(nπx/2)),x∈[0,1]
再看展成余弦级数,先把f(x)偶性延拓到区间[-1,0)上,使得f(x)=f(-x),x∈[-1,0)
最后再把f(x)以周期为2延拓到整个实轴上去,令x=t/π,记g(t)=f(x)=f(t/π)
则g(t)是周期为2π的偶函数,所以bn=0
an=(∫(-π,π)g(t)cos(nt)dt)/π=(2/π)(∫(0,π)g(t)cos(nt)dt
=2[(-1)^n-1]/(nπ)²,n=1,2,3.而a0=(2/π)(∫(0,π)g(t)cos(nt)dt=1
即g(t)=a0/2+∑an(cos(nt))=>f(x)=g(t)=1/2+∑an(cos(nt))=1/2+∑an(cos(nπx))
=1/2-4∑(cos(2n-1)πx)/[(2n-1)π]²,x∈[0,1]
以上∑都是n从1到∞求和
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
先看展成正弦级数,先把f(x)延拓到区间(1,2],使得f(x)=2-x,x∈(1,2]
再把f(x)奇性延拓到区间[-2,0)上,使得f(x)=-f(-x),x∈[-2,0)
最后再把f(x)以周期为4延拓到整个实轴上去,令x=2t/π,记g(t)=f(x)=f(2t/π)
则g(t)是周期为2π的奇函数,所以an=0
bn=(∫(-π,π)g(t)sin(nt)dt)/π=(2/π)(∫(0,π)g(t)sin(nt)dt
=[8sin(nπ/2)]/(nπ)²,n=1,2,3.
即g(t)=∑bn(sin(nt))=>f(x)=g(t)=∑bn(sin(nt))=∑bn(sin(nπx/2)),x∈[0,1]
再看展成余弦级数,先把f(x)偶性延拓到区间[-1,0)上,使得f(x)=f(-x),x∈[-1,0)
再把f(x)奇性延拓到区间[-2,0)上,使得f(x)=-f(-x),x∈[-2,0)
最后再把f(x)以周期为4延拓到整个实轴上去,令x=2t/π,记g(t)=f(x)=f(2t/π)
则g(t)是周期为2π的奇函数,所以an=0
bn=(∫(-π,π)g(t)sin(nt)dt)/π=(2/π)(∫(0,π)g(t)sin(nt)dt
=[8sin(nπ/2)]/(nπ)²,n=1,2,3.
即g(t)=∑bn(sin(nt))=>f(x)=g(t)=∑bn(sin(nt))=∑bn(sin(nπx/2)),x∈[0,1]
再看展成余弦级数,先把f(x)偶性延拓到区间[-1,0)上,使得f(x)=f(-x),x∈[-1,0)
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询