高中数学,数列 20
2个回答
展开全部
解:
令Tn=2×1/2^1+2×2/2^2+...+2n/2^n
Tn=1/2^0+2/2^1+...+n/2^(n-1)
Tn/2=1/2^1+2/2^2+...+(n-1)/2^(n-1)+n/2^n
Tn-Tn/2=Tn/2=1/2^0+1/2^1+...+1/2^(n-1)-n/2^n
=(2^n-1)/(2-1)-n/2^n
=2^n-1-n/2^n
Tn=2^(n+1)-2n/2^n -2
Sn=a1+a2+...+an
=(2×1/2^1+2×2/2^2+...+2n/2^n)+(1/2^1+1/2^2+...+1/2^n)
=Tn+(1/2)[1-(1/2)^n]/(1-1/2)
=2^(n+1)-2n/2^n-2+1-1/2^n
=2^(n+1)-(2n+1)/2^n -1
令Tn=2×1/2^1+2×2/2^2+...+2n/2^n
Tn=1/2^0+2/2^1+...+n/2^(n-1)
Tn/2=1/2^1+2/2^2+...+(n-1)/2^(n-1)+n/2^n
Tn-Tn/2=Tn/2=1/2^0+1/2^1+...+1/2^(n-1)-n/2^n
=(2^n-1)/(2-1)-n/2^n
=2^n-1-n/2^n
Tn=2^(n+1)-2n/2^n -2
Sn=a1+a2+...+an
=(2×1/2^1+2×2/2^2+...+2n/2^n)+(1/2^1+1/2^2+...+1/2^n)
=Tn+(1/2)[1-(1/2)^n]/(1-1/2)
=2^(n+1)-2n/2^n-2+1-1/2^n
=2^(n+1)-(2n+1)/2^n -1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询