如图在三角形ABC中,AD平分角BAC,DE平行AC,EF垂直AD交BC延长线于点F。求证:角FAC=角B
展开全部
证明:因为角EAD=角CAD,(AD平分角BAC)
又:角EDA=角DAC,(DE//AC)
所以,角EDA=角DAE
又:EF垂直于AD
所以,EF是AD的垂直平分线,
∴FD=FA,(垂直平分线上的点到线段两个端点的距离相等)
∴∠ADF=∠DAF,(在一个三角形中,等边对等角)
又∵∠ADF=∠BAD+∠B,(三角形的一个外角等于和它不相邻的两个内角的和)
∴∠DAF=∠BAD+∠B,
∵∠DAF=∠DAC+∠FAC,
∴∠DAC+∠FAC=∠BAD+∠B,
∵AD是角平分线,
∴∠DAC=∠BAD,
∴∠B=∠FAC
又:角EDA=角DAC,(DE//AC)
所以,角EDA=角DAE
又:EF垂直于AD
所以,EF是AD的垂直平分线,
∴FD=FA,(垂直平分线上的点到线段两个端点的距离相等)
∴∠ADF=∠DAF,(在一个三角形中,等边对等角)
又∵∠ADF=∠BAD+∠B,(三角形的一个外角等于和它不相邻的两个内角的和)
∴∠DAF=∠BAD+∠B,
∵∠DAF=∠DAC+∠FAC,
∴∠DAC+∠FAC=∠BAD+∠B,
∵AD是角平分线,
∴∠DAC=∠BAD,
∴∠B=∠FAC
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询