核磁共振的成像原理
3个回答
展开全部
核磁共振成像原理
原子核自旋,有角动量。由于核带电荷,它们的自旋就产生磁矩。当原子核置于静磁场中,本来是随机取向的双极磁体受磁场力的作用,与磁场作同一取向。以质子即氢的主要同位素为例,它只能有两种基本状态:取向“平行”和“反向平行”,他们分别对应于低能和高能状态。精确分析证明,自旋并不完全与磁场趋向一致,而是倾斜一个角度θ。这样,双极磁体开始环绕磁场进动。进动的频率取决于磁场强度。也与原子核类型有关。它们之间的关系满足拉莫尔关系:ω0=γB0,即进动角频率ω0是磁场强度B0与磁旋比γ的积。γ是每种核素的一个基本物理常数。氢的主要同位素,质子,在人体中丰度大,而且它的磁矩便于检测,因此最适宇从它得到核磁共振图像。
从宏观上看,作进动的磁矩集合中,相位是随机的。它们的合成取向就形成宏观磁化,以磁矩M表示。就是这个宏观磁矩在接收线圈中产生核磁共振信号。在大量氢核中,约有一半略多一点处于低等状态。可以证明,处于两种基本能量状态核子之间存在动态平衡,平衡状态由磁场和温度决定。当从较低能量状态向较高能量状态跃迁的核子数等于从较高能量状态到较低能量状态的核子数时,就达到“热平衡”。如果向磁矩施加符合拉莫尔频率的射频能量,而这个能量等于较高和较低两种基本能量状态间磁场能量的差值,就能使磁矩从能量较低的“平行”状态跳到能量较高“反向平行”状态,就发生共振。
由于向磁矩施加拉莫频率的能量能使磁矩发生共振,那么使用一个振幅为B1,而且与作进动的自旋同步(共振)的射频场,当射频磁场B1的作用方向与主磁场B0垂直,可使磁化向量M偏离静止位置作螺旋运动,或称章动,即经射频场的力迫使宏观磁化向量环绕它作进动。如果各持续时间能使宏观磁化向量旋转90º角,他就落在与静磁场垂直的平面内。可产生横向磁化向量Mxy。如果在这横向平面内放置一个接收线圈,该线圈就能切割磁力线产生感生电压。当射频磁场B1撤除后,宏观磁化向量经受静磁场作用,就环绕它进动,称为“自由进动”。因进动的频率是拉莫尔频率,所感生的电压也具有相同频率。由于横向磁化向量是不恒定,它以特征时间常数衰减至零为此,它感生的电压幅度也随时间衰减,表现为阻尼振荡,这种信号就称为自由感应衰减信号(FID, Free Induction Decay)。信号的初始幅度与横向磁化成正比,而横向磁化与特定体元的组织中受激励的核子数目成正比,于是,在磁共振图像中可辨别氢原子密度的差异。
因为拉莫尔频率与磁场强度成比例,如果磁场沿X轴成梯度改变,得到的共振频率也显然与体元在X轴的位置有关。而要得到同时投影在二个坐标轴X-Y上的信号,可以先加上梯度磁场GX,收集和变换得到的信号,再用磁场GY代替GX,重复这一过程。在实际情况下,信号是从大量空间位置点收集的,信号由许多频率复合组成。利用数学分析方法,如富里叶变换,就不但能求出各个共振频率,即相应的空间位置,还能求出相应的信号振幅,而信号振幅与特定空间位置的自旋密度成比例。所有核磁共振成像方法都以这原理为基础。
原子核自旋,有角动量。由于核带电荷,它们的自旋就产生磁矩。当原子核置于静磁场中,本来是随机取向的双极磁体受磁场力的作用,与磁场作同一取向。以质子即氢的主要同位素为例,它只能有两种基本状态:取向“平行”和“反向平行”,他们分别对应于低能和高能状态。精确分析证明,自旋并不完全与磁场趋向一致,而是倾斜一个角度θ。这样,双极磁体开始环绕磁场进动。进动的频率取决于磁场强度。也与原子核类型有关。它们之间的关系满足拉莫尔关系:ω0=γB0,即进动角频率ω0是磁场强度B0与磁旋比γ的积。γ是每种核素的一个基本物理常数。氢的主要同位素,质子,在人体中丰度大,而且它的磁矩便于检测,因此最适宇从它得到核磁共振图像。
从宏观上看,作进动的磁矩集合中,相位是随机的。它们的合成取向就形成宏观磁化,以磁矩M表示。就是这个宏观磁矩在接收线圈中产生核磁共振信号。在大量氢核中,约有一半略多一点处于低等状态。可以证明,处于两种基本能量状态核子之间存在动态平衡,平衡状态由磁场和温度决定。当从较低能量状态向较高能量状态跃迁的核子数等于从较高能量状态到较低能量状态的核子数时,就达到“热平衡”。如果向磁矩施加符合拉莫尔频率的射频能量,而这个能量等于较高和较低两种基本能量状态间磁场能量的差值,就能使磁矩从能量较低的“平行”状态跳到能量较高“反向平行”状态,就发生共振。
由于向磁矩施加拉莫频率的能量能使磁矩发生共振,那么使用一个振幅为B1,而且与作进动的自旋同步(共振)的射频场,当射频磁场B1的作用方向与主磁场B0垂直,可使磁化向量M偏离静止位置作螺旋运动,或称章动,即经射频场的力迫使宏观磁化向量环绕它作进动。如果各持续时间能使宏观磁化向量旋转90º角,他就落在与静磁场垂直的平面内。可产生横向磁化向量Mxy。如果在这横向平面内放置一个接收线圈,该线圈就能切割磁力线产生感生电压。当射频磁场B1撤除后,宏观磁化向量经受静磁场作用,就环绕它进动,称为“自由进动”。因进动的频率是拉莫尔频率,所感生的电压也具有相同频率。由于横向磁化向量是不恒定,它以特征时间常数衰减至零为此,它感生的电压幅度也随时间衰减,表现为阻尼振荡,这种信号就称为自由感应衰减信号(FID, Free Induction Decay)。信号的初始幅度与横向磁化成正比,而横向磁化与特定体元的组织中受激励的核子数目成正比,于是,在磁共振图像中可辨别氢原子密度的差异。
因为拉莫尔频率与磁场强度成比例,如果磁场沿X轴成梯度改变,得到的共振频率也显然与体元在X轴的位置有关。而要得到同时投影在二个坐标轴X-Y上的信号,可以先加上梯度磁场GX,收集和变换得到的信号,再用磁场GY代替GX,重复这一过程。在实际情况下,信号是从大量空间位置点收集的,信号由许多频率复合组成。利用数学分析方法,如富里叶变换,就不但能求出各个共振频率,即相应的空间位置,还能求出相应的信号振幅,而信号振幅与特定空间位置的自旋密度成比例。所有核磁共振成像方法都以这原理为基础。
三英精密仪器有限公司
2021-03-19 广告
2021-03-19 广告
核磁共振是指具有磁矩的原子核在直流磁场的作用下,对射频电磁渡的吸故共振现象。核磁共振成像是指医学上利用核磁共振原理来显示人体局部或全身体层的解剖形态和功能活动的检查方法。由于人体内各种组织的氢核密度等参数各不相同(正常和病变组织也是如此),...
点击进入详情页
本回答由三英精密仪器有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |