如何在小学数学教学中渗透合情推理
1个回答
展开全部
一、 推理思想
推理是从一个或几个已有的判断得出另一个新判断的思维形式。
推理分为两种形式:1、演绎推理和2、合情推理。
1、演绎推理是根据一般性的真命题(或逻辑规则)推出特殊性命题的推理。演绎推理的特征是:当前提为真时,结论必然为真。演绎推理的常用形式有:三段论、选言推理、假言推理、关系推理等。
(1)三段论,有两个前提和一个结论的演绎推理,叫做三段论。三段论是演绎推理的一般模式,包括:大前提——已知的一般原理,小前提——所研究的特殊情况,结论——根据一般原理,对特殊情况做出的判断。例如:一切奇数都不能被2整除,(2 +1)是奇数,所以(2 +1)不能被2整除。
(2)选言推理,分为相容选言推理和不相容选言推理。这里只介绍不相容选言推理:大前提是个不相容的选言判断,小前提肯定其中的一个选言支,结论则否定其它选言支;小前提否定除其中一个以外的选言支,结论则肯定剩下的那个选言支。例如:一个三角形,要么是锐角三角形,要么是直角三角形,要么是钝角三角形。这个三角形不是锐角三角形和直角三角形,所以,它是个钝角三角形。
(3)假言推理, 假言推理的分类较为复杂,这里简单介绍一种充分条件假言推理:前提有一个充分条件假言判断,肯定前件就要肯定后件,否定后件就要否定前件。例如:如果一个数的末位是0,那么这个数能被5整除;这个数的末位是0,所以这个数能被5整除。这里的大前提是一个假言判断,所以这种推理尽管与三段论有相似的地方,但它不是三段论。
(4)关系推理,是前提中至少有一个是关系命题的推理。下面简单举例说明几种常用的关系推理:(1)对称性关系推理,如1米=100厘米,所以100厘米=1米;(2)反对称性关系推理,a大于b,所以b不大于a ;(3)传递性关系推理,a>b,b>c,所以a>c。关系推理在数学学习中应用比较普遍,如在一年级学习数的大小比较时,把一些数按从小到大或从大到小的顺序排列,实际上都用到了关系推理。(原来我这么无知的在教学,嘴里喊着“推理”,自己在教学生的时候面对“推理”却毫不知情。)
2、合情推理是从已有的事实出发,凭借经验和直觉,通过归纳和类比等推测某些结果。合情推理的常用形式有:归纳推理和类比推理。当前提为真时,合情推理所得的结论可能为真也可能为假。
(1)归纳推理,是从特殊到一般的推理方法,即依据一类事物中部分对象的相同性质推出该类事物都具有这种性质的一般性结论的推理方法。
归纳法分为完全归纳法和不完全归纳法。
完全归纳法是根据某类事物中的每个事物或每个子类事物都具有某种性质,而推出该类事物具有这种性质的一般性结论的推理方法。完全归纳法考察了所有特殊对象,所得出的结论是可靠的。
不完全归纳法是通过观察某类事物中部分对象发现某些相同的性质,推出该类事物具有这种性质的一般性结论的推理方法。依据该方法得到的结论可能为真也可能为假,需要进一步证明结论的可靠性。
数学归纳法是一种特殊的数学推理方法,从表面上看并没有考察所有对象,但是根据自然数的性质,相当于考察了所有对象,因而数学归纳法实际上属于完全归纳推理。
(2)类比推理,是从特殊到特殊的推理方法,即依据两类事物的相似性,用一类事物的性质去推测另一类事物也具有该性质的推理方法。依据该方法得到的结论可能为真也可能为假,需要进一步证明结论的可靠性。
在解决问题的过程中,合情推理有助于探索解决问题的思路,发现结论;演绎推理用于证明结论的正确性”。
推理是从一个或几个已有的判断得出另一个新判断的思维形式。
推理分为两种形式:1、演绎推理和2、合情推理。
1、演绎推理是根据一般性的真命题(或逻辑规则)推出特殊性命题的推理。演绎推理的特征是:当前提为真时,结论必然为真。演绎推理的常用形式有:三段论、选言推理、假言推理、关系推理等。
(1)三段论,有两个前提和一个结论的演绎推理,叫做三段论。三段论是演绎推理的一般模式,包括:大前提——已知的一般原理,小前提——所研究的特殊情况,结论——根据一般原理,对特殊情况做出的判断。例如:一切奇数都不能被2整除,(2 +1)是奇数,所以(2 +1)不能被2整除。
(2)选言推理,分为相容选言推理和不相容选言推理。这里只介绍不相容选言推理:大前提是个不相容的选言判断,小前提肯定其中的一个选言支,结论则否定其它选言支;小前提否定除其中一个以外的选言支,结论则肯定剩下的那个选言支。例如:一个三角形,要么是锐角三角形,要么是直角三角形,要么是钝角三角形。这个三角形不是锐角三角形和直角三角形,所以,它是个钝角三角形。
(3)假言推理, 假言推理的分类较为复杂,这里简单介绍一种充分条件假言推理:前提有一个充分条件假言判断,肯定前件就要肯定后件,否定后件就要否定前件。例如:如果一个数的末位是0,那么这个数能被5整除;这个数的末位是0,所以这个数能被5整除。这里的大前提是一个假言判断,所以这种推理尽管与三段论有相似的地方,但它不是三段论。
(4)关系推理,是前提中至少有一个是关系命题的推理。下面简单举例说明几种常用的关系推理:(1)对称性关系推理,如1米=100厘米,所以100厘米=1米;(2)反对称性关系推理,a大于b,所以b不大于a ;(3)传递性关系推理,a>b,b>c,所以a>c。关系推理在数学学习中应用比较普遍,如在一年级学习数的大小比较时,把一些数按从小到大或从大到小的顺序排列,实际上都用到了关系推理。(原来我这么无知的在教学,嘴里喊着“推理”,自己在教学生的时候面对“推理”却毫不知情。)
2、合情推理是从已有的事实出发,凭借经验和直觉,通过归纳和类比等推测某些结果。合情推理的常用形式有:归纳推理和类比推理。当前提为真时,合情推理所得的结论可能为真也可能为假。
(1)归纳推理,是从特殊到一般的推理方法,即依据一类事物中部分对象的相同性质推出该类事物都具有这种性质的一般性结论的推理方法。
归纳法分为完全归纳法和不完全归纳法。
完全归纳法是根据某类事物中的每个事物或每个子类事物都具有某种性质,而推出该类事物具有这种性质的一般性结论的推理方法。完全归纳法考察了所有特殊对象,所得出的结论是可靠的。
不完全归纳法是通过观察某类事物中部分对象发现某些相同的性质,推出该类事物具有这种性质的一般性结论的推理方法。依据该方法得到的结论可能为真也可能为假,需要进一步证明结论的可靠性。
数学归纳法是一种特殊的数学推理方法,从表面上看并没有考察所有对象,但是根据自然数的性质,相当于考察了所有对象,因而数学归纳法实际上属于完全归纳推理。
(2)类比推理,是从特殊到特殊的推理方法,即依据两类事物的相似性,用一类事物的性质去推测另一类事物也具有该性质的推理方法。依据该方法得到的结论可能为真也可能为假,需要进一步证明结论的可靠性。
在解决问题的过程中,合情推理有助于探索解决问题的思路,发现结论;演绎推理用于证明结论的正确性”。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询