怎么描述函数的单调性 经济数学基础
函数的单调性也可以叫做函数的增减性。当函数 f(x) 的自变量在其定义区间内增大(或减小)时,函数值f(x)也随着增大(或减小),则称该函数为在该区间上具有单调性。
函数的单调性也可以叫做函数的增减性。当函数 f(x) 的自变量在其定义区间内增大(或减小)时,函数值f(x)也随着增大(或减小),则称该函数为在该区间上具有单调性。
函数的单调性也可以叫做函数的增减性。当函数 f(x) 的自变量在其定义区间内增大(或减小)时,函数值f(x)也随着增大(或减小),则称该函数为在该区间上具有单调性。
如果说明一个函数在某个区间D上具有单调性,则我们将D称作函数的一个单调区间,则可判断出:
1、D⊆Q(Q是函数的定义域)。
2、区间D上,对于函数f(x),∀(任取值)x1,x2∈D且x1>x2,都有f(x1) >f(x2)。或,∀ x1,x2∈D且x1>x2,都有f(x1) <f(x2)。
3、函数图像一定是上升或下降的。
4、该函数在E⊆D上与D上具有相同的单调性。
扩展资料:
有些函数在整个定义域内是单调的;有些函数在定义域内的部分区间上是增函数,在部分区间上是减函数;有些函数是非单调函数,如常数函数。
函数的单调性是函数在一个单调区间上的“整体”性质,具有任意性,不能用特殊值代替。 [2]
在利用导数讨论函数的单调区间时,首先要确定函数的定义域,解决问题的过程中只能在定义域内,通过讨论导数的符号来判断函数的单调区间。
如果一个函数具有相同单调性的单调区间不止一个,那么这些单调区间不能用“∪”连接,而只能用“逗号”或“和”字隔开。
参考资料来源:百度百科——单调性
函数的单调性(monotonicity)也可以叫做函数的增减性。当函数 f(x) 的自变量在其定义区间内增大(或减小)时,函数值f(x)也随着增大(或减小),则称该函数为在该区间上具有单调性。
函数的单调性(monotonicity)也可以叫做函数的增减性。当函数 f(x) 的自变量在其定义区间内增大(或减小)时,函数值f(x)也随着增大(或减小),则称该函数为在该区间上具有单调性。
广告 您可能关注的内容 |