求大神讲一道高数题
展开全部
你还记得立方差公式吗?!
把(1-x+x²)看做是[(1-x+x²)^(1/3)]³,则:
1-(1-x+x²)=[1-(1-x+x²)^(1/3)]·[1+(1-x+x²)^(1/3)+(1-x+x²)^(2/3)]
即:x-x²=[1-(1-x+x²)^(1/3)]·[1+(1-x+x²)^(1/3)+(1-x+x²)^(2/3)]
所以:分子1-(1-x+x²)^(1/3)=(x-x²)/[1+(1-x+x²)^(1/3)+(1-x+x²)^(2/3)]
故,原式=lim<x→0>(1-x)/[1+(1-x+x²)^(1/3)+(1-x+x²)^(2/3)]
=(1-0)/(1+1+1)
=1/3
把(1-x+x²)看做是[(1-x+x²)^(1/3)]³,则:
1-(1-x+x²)=[1-(1-x+x²)^(1/3)]·[1+(1-x+x²)^(1/3)+(1-x+x²)^(2/3)]
即:x-x²=[1-(1-x+x²)^(1/3)]·[1+(1-x+x²)^(1/3)+(1-x+x²)^(2/3)]
所以:分子1-(1-x+x²)^(1/3)=(x-x²)/[1+(1-x+x²)^(1/3)+(1-x+x²)^(2/3)]
故,原式=lim<x→0>(1-x)/[1+(1-x+x²)^(1/3)+(1-x+x²)^(2/3)]
=(1-0)/(1+1+1)
=1/3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询