高等数学,关于导数的问题,极大值极小值
高等数学,关于导数的问题,极大值极小值①如图题目怎么做?②个人理解,极大值点,那么就有这一点二阶导小于0,且有其导数的值为0→则这个点是驻点(但是别人反驳我说,极大值点也...
高等数学,关于导数的问题,极大值极小值①如图题目怎么做?
②个人理解,极大值点,那么就有这一点二阶导小于0,且有其导数的值为0→则这个点是驻点(但是别人反驳我说,极大值点也可以是导数不存在的点,这个点就不是驻点) 展开
②个人理解,极大值点,那么就有这一点二阶导小于0,且有其导数的值为0→则这个点是驻点(但是别人反驳我说,极大值点也可以是导数不存在的点,这个点就不是驻点) 展开
展开全部
解:
对f(x)=1/x*lnx求导,f'(x)=-(lnx+1)/(xlnx)^2
令f'(x)=0 得出 x=1/e
在(0,1/e)上f(x)单调递增 在(1/e,1)上单调递减,所以在1/e出取得极(最)大值。f(1/e)=e
再看条件是2^1/x>x^a
两边取对数ln 得到:ln2^1/x>lnx^a 即:ln2*1/x>a*lnx 在(0,1)上lnx小于零
两边同时除以lnx变号得到:1/x*lnx<a/ln2 即a/ln2大于f(x)=1/x*lnx在(0,1)得最大值f(1/e)=e
所以a>eln2
极值点是最小值时:
f'(x)=1/x+a/x^2, f''(x)=-1/x^2-2a/x^3
f'(x)=0时,1/x+a/x^2=0,x=-a
f(-a)=ln(-a)-a/(-a)=ln(-a)+1
若ln(-a)+1=2,则a=-e,
此时x=e在区间[1,e]内,f''(e)=1/e^2>0,即存在极小值
边界值x=1处是函数最小值时:
f(1)=ln1-a=2,则a=-2
此时极值点f(-a)=f(2)=ln2+2/2=ln2+1<2,即比边界值更小,故f(1)不是函数最小值
因此a=-e
对f(x)=1/x*lnx求导,f'(x)=-(lnx+1)/(xlnx)^2
令f'(x)=0 得出 x=1/e
在(0,1/e)上f(x)单调递增 在(1/e,1)上单调递减,所以在1/e出取得极(最)大值。f(1/e)=e
再看条件是2^1/x>x^a
两边取对数ln 得到:ln2^1/x>lnx^a 即:ln2*1/x>a*lnx 在(0,1)上lnx小于零
两边同时除以lnx变号得到:1/x*lnx<a/ln2 即a/ln2大于f(x)=1/x*lnx在(0,1)得最大值f(1/e)=e
所以a>eln2
极值点是最小值时:
f'(x)=1/x+a/x^2, f''(x)=-1/x^2-2a/x^3
f'(x)=0时,1/x+a/x^2=0,x=-a
f(-a)=ln(-a)-a/(-a)=ln(-a)+1
若ln(-a)+1=2,则a=-e,
此时x=e在区间[1,e]内,f''(e)=1/e^2>0,即存在极小值
边界值x=1处是函数最小值时:
f(1)=ln1-a=2,则a=-2
此时极值点f(-a)=f(2)=ln2+2/2=ln2+1<2,即比边界值更小,故f(1)不是函数最小值
因此a=-e
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询