3个回答
展开全部
∫(0->1) e^x/(1+x) dx =A
let
1+x = -(u-a-1)
dx = -du
x=0, u=a
x=1, u=a-1
∫(0->1) e^x/(1+x) dx =A
∫(a->a-1) [ e^(-u+a)/-(u-a-1) ] -du =A
∫(a->a-1) [ e^(-u+a)/(u-a-1) ] du =A
-∫(a-1->a) [ e^(-u+a)/(u-a-1) ] du =A
-e^a . ∫(a-1->a) [ e^(-u)/(u-a-1) ] du =A
∫(a-1->a) [ e^(-u)/(u-a-1) ] du =-A. e^a
∫(a-1->a) [ e^(-x)/(x-a-1) ] dx =-A. e^a
let
1+x = -(u-a-1)
dx = -du
x=0, u=a
x=1, u=a-1
∫(0->1) e^x/(1+x) dx =A
∫(a->a-1) [ e^(-u+a)/-(u-a-1) ] -du =A
∫(a->a-1) [ e^(-u+a)/(u-a-1) ] du =A
-∫(a-1->a) [ e^(-u+a)/(u-a-1) ] du =A
-e^a . ∫(a-1->a) [ e^(-u)/(u-a-1) ] du =A
∫(a-1->a) [ e^(-u)/(u-a-1) ] du =-A. e^a
∫(a-1->a) [ e^(-x)/(x-a-1) ] dx =-A. e^a
追问
let后面的第一步怎么想到?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询